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Abstract 
 
Failure assessment encompasses the identification and characterization both of potential 
failure mechanisms in systems under development and of actual failure occurrences in 
operational systems. This paper presents several of the most widely used and useful 
techniques for failure assessment across the system lifecycle with an emphasis on the role 
of software.  For each technique the paper describes its purpose and background, 
summarizes the process of performing the technique, and evaluates the technique’s 
strengths and limitations.  The discussion provides lessons learned from practice, 
examples from spacecraft applications, and pointers to additional work in the field.  The 
paper describes some of the tools that are available to help the practitioner select and 
implement failure assessment techniques and identifies likely future directions in failure 
assessment. 

 
Introduction 
 
A failure is the inability of a system or component to perform its required functions 
within specified performance requirements [IEEE90]. Failure assessment encompasses 
the identification and characterization both of potential failure mechanisms in systems 
under development and of actual failure occurrences in operational systems.  Three 
questions to which developers and users want accurate, precise answers are "How can the 
system fail?", "What bad things will happen if the failure occurs?", and "How many 
failures will the system experience?"  In this paper we discuss several of the most 
promising techniques that have been devised to answer these questions, such as Fault 
Tree Analysis (FTA) and Failure Modes, Effects and Criticality Analysis (FMECA).   

The paper emphasizes the role of software in the system and of software failure in system 
failure assessment.  Software is currently a major challenge to the safety and reliability of 
space and aerospace systems. Many accidents and near-misses have been caused by 
software failures. For software, the techniques described here include Software Fault 
Tree Analysis (SFTA), Software Failure Modes, Effects, and Criticality Analysis  
(SFMECA), Bi-Directional Safety Analysis (BDSA), and Software Fault/Failure 
Modeling. 

SFTA and SFMECA have been successfully used to analyze the flight software for a 
number of robotic planetary exploration missions, including Galileo, Cassini, and Deep 
Space 1.  SFTA has also been shown to be effective in analyzing the security aspects of 



software systems by modeling intrusion mechanisms and effects using fault trees 
[Helm02].   The Bi-Directional Safety Analysis (BDSA) method combines a forward 
search (similar to SFMECA) from potential failure modes to their effects, with a 
backward search (similar to SFTA) from feasible hazards to the contributing causes of 
each hazard. BDSA offers an efficient way to identify latent failures.   Recent work has 
extended BDSA to product- line applications such as flight- instrumentation displays and 
developed tool support for the reuse of the failure-analysis artifacts within a product line  
[Dehl04, Dehl06, Feng05]. BDSA has also been streamlined to support those projects 
having tight cost and/or schedule constraints for their failure analysis efforts [Lutz99].  

A substantial amount of research has been devoted to estimating the number of failures 
that a software system will experience during test and operations, as well as the number 
of faults that have been inserted into that system during its development.  Nikora, for 
example, has found that the amount of structural change to a system during its develop-
ment is strongly related to the number of faults inserted into it.   Using techniques 
requiring no additional effort on the part of the development organization, the required 
measurements of structural evolution can be easily obtained from a development effort's 
configuration management system and readily transformed into an estimate of fault 
content.  So far, structure-fault relationships have been identified for source code; current 
work seeks to examine artifacts available earlier in the lifecycle to determine if similar 
relationships between structure and fault content can be found.  In particular, relation-
ships between requirements change requests and the number of faults inserted into the 
implemented system would provide a significant improvement in our ability to control 
software quality during the early deve lopment phases.  

 
FMEA 
 
Purpose: Failure Modes and Effects Analysis (FMEA) is an engineering process that 
investigates the potential effects of postulated failures on a system and its environment. 
When the criticality of the effects is also considered, the technique is called a Failure 
Modes, Effects and Criticality Analysis (FMECA).  FMEA and FMECA are widely used 
to discover design defects during development of a system and to troubleshoot problems 
during system operation. 
 
Background:  FMEA developed in the late 50s and 60s to provide a systematic form of 
failure analysis that could improve reliability.  Its use has been embraced by a broad 
range of industries including device designers, aerospace, automotive, manufacturing and 
chemical processing.  The earliest organizations to set standards on FMEA were NASA 
in 1971 and the U.S. military in 1974.  See [Lutz99a] for more information. 
 
Process:   The input to FMEA is a design description of the system or component.  After 
determining the scope of the analysis (what components and what level of detail are 
appropriate), the analyst identifies the failure modes of each block.  Depending on the 
scope of the analysis and type of system, these failure modes may include mechanical, 
electronic, electrical, software, environmental and/or operational aspects of the system.  
Often the potential failure modes are drawn from pre-existing libraries of known failure 



modes for each component.  These guidewords (e.g., “rupture” or “short-circuit”) provide 
a structured approach to the investigation.  
 
After determining the failure modes, the analyst then determines the effect of each 
potential failure mode on the component (local effect) and on the system operating in its 
environment (global effect).  Effects range from effects on the component itself (“leak”) 
to effects on the environment (“contamination”).   
 
The FMEA results are recorded in a table with the left-hand columns describ ing the 
failure mode and, perhaps, the guideword used to identify it, and the right-hand columns 
describing the effects and, perhaps, the criticality rankings of the effects.  Some FMEAs 
are quantitative and may also have probabilities attached to the occurrence of the failure 
modes and of the effects. The rightmost column of the FMEA may contain a mitigation 
plan or recommendation for how to avoid/prevent/recover from the failure mode.  The 
output of the FMEA is a set of recommended corrective actions for design improvement 
and the FMEA tables.  
 
Discussion:  FMEA is a bottom-up, static-analysis technique with the effect of failure on 
the individual component first being identified.  FMEA is often performed hierarchically 
with the effects at the lower level typically serving as the failure modes at the next higher 
level.  FMEA is also a forward-analysis technique since it proceeds forward in time from 
the occurrence of failures to their subsequent effects.   The quality of the FMEA depends 
on the analyst’s level of knowledge of the system being studied. Tools and automation 
are discussed below.   A limitation of FMEA is that it usually considers only one failure 
at a time so may not be suitable for investigation of multiple failures or of common-cause 
failures, especially those involving subtle timing issues.  
 
 
SFMEA 
 
Purpose:  Software Failure Modes and Effects Analysis (SFMEA) is a software-
engineering process that investigates the potential effects of postulated software failures 
on a system and its environment. When the criticality of the effects is also considered, the 
technique is called a Software Failure Modes, Effects and Criticality Analysis 
(SFMECA).  SFMEA and SFMECA are primarily used to discover software design 
defects during software development. 
 
Background: SFMEA is an extension of FMEA developed in the 70s to provide a 
systematic form of failure analysis that could improve reliability.  It has been used 
internationally in the development of software for space systems.   There are several 
guidebooks that describe SFMEA but no publicly available standards. See [Herm99, 
Lutz97, NASA04, Reif79] for more information. 
 
Process:  SFMEA is a structured, table-based process of discovering and documenting 
the ways in which a software component can fail and the consequences of those failures. 
The input to a SFMEA is a specification of the design or detailed requirements of the 



software.  After determining the scope of the analysis (what software components and 
what level of detail are appropriate), the analyst identifies the failure modes of each 
block.  The SFMEA process is guided by a set of standardized failure modes (“wrong 
timing of data”, “abnormal process termination”).  Note that SFMEA is most effective 
when the failure modes include anomalous software data and events, i.e., deviations from 
expected software behavior, rather than just faults.  
 
The SFMEA process traces the propagation of anomalies from causes (failure modes) to 
local (subsystem or component) effects to global (system or environmental) effects.  An 
example of a failure mode is “heater turned on too early”.  An example of an effect is 
“battery allocation exceeded”. The left-hand columns describe the failure modes, possibly 
in terms of guidewords [Lutz97]; the right-hand columns describe the local and system 
effects. In a SFMECA a criticality rating (e.g., high, medium or low) is assigned to each 
failure mode based upon its likelihood of occurrence and the severity of its effects.   
 
We recommend the construction of two types of SFMEA tables in order to consider both 
communication failures and process failures, a Data Table and an Events Table. The Data 
Table analyzes failures in software interfaces and data dependencies.  This table 
evaluates both the effect of receiving bad or unexpected input data on software behavior 
and the effect of producing bad or unexpected output data on the behavior of the 
components that receive or use this data.  Table 1 shows an excerpt from a SFMEA data 
table.  
 

Data Item Failure Mode Failure Description System Effect Criticality 

Heater ON Timing wrong Heater ON too 
early 

Batteries can't support Low 

Heater ON Timing wrong Heater ON too late Experiment delayed Low 

Heater OFF Timing wrong Heater OFF too 
early 

Science data lost Low 

Heater OFF Timing wrong Heater OFF too 
late 

Energy allocation 
exceeded 

Low 

Table 1. Excerpt from a SFMEA 
 
The Events Table analyzes failures in the functional execution of the software program. 
This table describes both the local effect and global effect of performing an incorrect 
event (“lock door”). What constitutes an event depends on the scope of the analysis and 
the level of detail of the available documentation.  An event is usually considered to be a 
single action (“perform calculation”, “sample sensor value”, “slew antenna to new 
position”). See [Lutz97, NASA04] for a fuller description of the process. The rightmost 
column of the SFMEA often describes software change requests or other corrective 
actions (e.g., operational flight rules) to mitigate failure modes.  The output of the 
SFMEA is the recommendations for design improvement and the SFMEA Data and 
Event Tables.  
 
Discussion: SFMEA is a bottom-up, forward-analysis technique. SFMEA describes the 
effects of the hypothesized failure mode as they propagate through the software and the 
system.  As with FMEA, a limitation is that multiple, concurrent failures and common-



cause failures may escape detection.  Integration of the SFMEA with the backward-
analysis technique of Software Fault Tree Analysis has shown some success in overcom-
ing this limitation.  That integration is discussed below. 
 
FTA 
 
Purpose: Fault Tree Analysis is an engineering activity that investigates the potential 
causes of a fault or hazard. FTA is widely used to discover design defects during the 
development of a system and to investigate the causes of accidents or problems that occur 
during system operation.  
 
Background:  FTA was developed in the early 1960’s at Bell Telephone Laboratories to 
analyze the Minuteman Launch Control System. It is probably the most widely used 
analysis technique in industry for reasoning about safety and  reliability.  It has been used 
for both quantitative analysis and qualitative analysis. See [Leve95, MIL80, Rah90, 
Stor96] for additional information. 
 
Process:   The input to FTA is a hazard, failure or accident, and a design description of 
the system.  The analyst works backward from the root-node hazard, using Boolean logic 
to describe the combination of events or conditions that caused each node.   Each 
resulting node is similarly decomposed until events determined to be basic by the analyst 
(i.e., not meriting further decomposition) are reached at the leaf nodes.   
 
In each fault tree its minimum cut sets are the smallest sets of basic events that cause the 
root node to occur.  These describe all the different ways in which the root-node hazard 
can happen.   The analyst then focuses attention on how best to remove the vulnerabilities 
in the design that the FTA has identified. By removing paths to the root node, the risk of 
the hazard occurring is reduced. The output of the FTA is thus the fault trees it produces 
and the set of recommendations for corrective actions to be taken to preclude the 
occurrence of the hazard. 
 
Discussion: FTA is a top-down technique. Fault trees are sometimes constructed with 
each successive level refining the understanding of the root event. Other times fault trees 
are constructed with backward analysis, where each successive level works backward in 
time.  A limitation of this approach is that a fault tree must be created for every top- level 
hazard that is considered.  Another limitation is that the root node must be a known 
(rather than a latent) hazard.  Because basic fault trees do not capture timing information, 
there have been several extensions to incorporate time [Hans98]. 
 
SFTA  
 
Purpose:  Software Fault Tree Analysis (SFTA) is a static-analysis process that 
investigates the potential software-related causes of a fault or hazard. SFTA is primarily 
used in software development to discover software defects.  It is most efficiently applied 
when detailed requirements or design documentation exist.  It has also been used for 
verifying software code [Leve95]. 



 
Background:  SFTA was developed in the 1980’s as an application of fault trees to 
software systems. It has proven to be an intuitively appealing way to structure the 
analysis of whether an undesirable event could occur and, if so, what events would lead 
to the occurrence of the undesirable event.   
 
Process:  SFTA is a structured, tree-based process of discovering and documenting the 
contributing causes to the occurrence of an undesirable event, represented in the root 
node.  The input to the SFTA is a root-node hazard or event of concern and a specifica-
tion of the design or detailed requirements of the software. Alternatively, SFTA can be 
performed on the software code.   
 
The SFTA process systematically traces the events or conditions that could lead to the 
undesirable root node, documenting them in Boolean logic.   Figure 1 shows a small 
example of a SFTA.  
 

 
Figure 1.  SFTA 
 
There are two basic gates that are used in SFTA:  AND gates and OR gates.  Together 
with the NOT notation, these form the core of the SFTA representation.  Different tools 
and approaches have different additional gates, such as INHIBIT, XOR, and 
PRIORITY_AND (to describe events that must occur in a specified order).  
 
Discussion:  SFTA is a top-down technique. It uses a backward search to find the 
possible causes of the problem. A traditional SFTA evaluates only the possibility of 
occurrence, not the likelihood. However, developers have often found it useful to 
annotate the nodes with quantitative information.  One such application is in security to 
detect how intrusions can occur [Helm02]. The SFTA there is sometimes called an 
“attack tree” because the root node describes a security attack on the system. As with 
FTA, a limitation of SFTA is that the root node can only describe a known failure. Also, 



as noted below in the Tools section, while these methods appear to be scalable for 
software, they are labor- intensive and thus costly.  A small study, reported below, 
provided some guidelines for how to limit the scope of the application to the most-critical 
components when project resources for failure analysis are limited.  
 
 
BDSA 
 
Purpose:  Bi-Directional Safety Analysis (BDSA) integrates the forward analysis 
performed in SFMEA and the backward analysis performed in SFTA to provide a more 
complete static analysis of the design.  The purpose of BDSA is to show that the software 
design is free of critical flaws that can contribute to hazards.  It is a systematic technique 
for identifying what can go wrong with each software component in the system (its 
failure modes), what effects each failure mode can have as it propagates through the 
system, and what events or features enable or contribute to the possibility of that failure 
mode in the first place.  The combination of the forward and backward search has proven 
effective in discovering latent safety requirements [Lutz97]. 
 
 Background:  Combining forward analysis and backward analysis grew out of the 
HAZOP approach used in the chemical industry to provide guideword-driven analysis of 
the effects and causes of deviations from the specified process [Leve95]. Beginning in the 
1990’s this approach was applied to software.  Whereas we perform the forward search 
first (to identify failures with high-risk effects) and then the backward search (for the 
causes of these failures), some users first perform a backward search on known failures 
and then a forward search to identify the effects.  
  
Process:  BDSA initially checks the design to determine whether the effects of abnormal 
input values and unexpected software events can contribute to unsafe system behavior.  
The forward analysis is similar to a SFMECA in that it moves from failure modes to 
effects.  Once the failure modes with unacceptable consequences have been identified, 
the backward analysis is performed to check whether the failure mode could occur in the 
given system.  This analysis investigates the feasibility of the failure and the design 
vulnerabilities that together can lead to the failure. The second part of the BDSA is 
similar to a SFTA.    
 
Discussion:  The integration of the forward search entailed in an SFMEA with the 
backward search of a SFTA enhances the effectiveness of the failure assessment.  In 
previous work we have used BDSA to find previously unidentified software failure 
modes, multiple, coincident anomalies, and hidden dependencies among software 
processes. For example, this approach was applied to twenty-four fault-protection 
software modules on two spacecraft systems, Cassini and Galileo.  The goal was to 
reduce the number of failures, minimize the effect of any remaining failure modes, and 
search for unanticipated failure modes.  Twenty-five issues requiring changes to the 
requirements specification were found in the first seven Cassini modules analyzed.  Four 
of these findings were significant, all involving missing or inadequate interface 
requirements [Lutz97].   



 
The SFMEA used forward searching to identify cases in which failed or anomalous data 
or behavior could have unacceptable effects.  The SFTA then applied backward search to 
investigate circumstances that could lead to those cases.  For example, the forward 
analysis found a failure mode in which outdated sensor data had the effect of preventing 
the software from commanding an essential reconfiguration. The backward analysis then 
found that this failure mode could occur when a sensor failed with a healthy value, since 
the obsolete data from a failed sensor continued to be sent to the software for processing.  
The demonstration of this latent failure mode (obsolete data preventing recovery action) 
allowed the software requirements to be changed to eliminate this potential fa ilure. 
 
More recently BDSA has been extended to product lines [Dehl04, Dehl06, Feng05].  A 
product line is a set of systems that share many features as well as a mission.  For 
example, flight- instrumentation displays have been developed as a product line. Product 
lines exploit reuse potential to build new systems with lower cost and, it is hoped, higher 
reliability.  The approach is to reuse portions of the safety analysis that were performed 
when the product line was initially specified to assist in the safety analysis of new 
products in the product line as they are added. If we can exploit the similarities among 
the systems (and, thus, among their safety analyses) without discounting the safety-
related effects of the variations among the individual systems, we may be able to improve 
safety analysis of the product line while reducing the associated costs.  However, the 
example of the Ariane rocket product line, where inadequate consideration of the safety-
related variations from the previous Ariane 4 doomed the Ariane 5 mission, continues to 
be a sobering example of the potential risks involved in the reuse of safety analysis and of 
how rigorously reuse in safety-critical product lines must be analyzed.  
 
Failure assessment techniques often emphasize full-scale, one-size-fits-all analysis of a 
system.  For smaller projects, where cost, schedule, or personnel constraints may restrict 
the scope of the analysis, findings from Lutz and Shaw’s application of BDSA to two 
space instruments (the Mars Microprobe on the Mars Polar Lander and the Earth Orbiting 
System’s Microwave Limb Sounder) offer some guidelines [Lutz99]. The main lessons 
learned from this experience were that the use of these analysis techniques should be: 

• Flexible, in order to leverage already existing project analyses and documentation 
• Tailored to specific project concerns, by letting the project choose the targets and 

scope of analysis (e.g., fault-protection or safety-critical components) 
• Risk-driven, in that prior analysis results guide the application  
• Capable of using “Zoom-in/Zoom-out” focusing,  in order to selectively do a 

more detailed analysis of issues of concern and only a high- level analysis of bet-
ter-understood and well-verified modules 

• Traceable, so that relationships between higher- level and lower- level failure 
assessments, and between software, hardware and system failure assessments, can 
be maintained as the system evolves. 

 
 
 
 



Software Reliability Engineering 
 
Purpose: Software reliability is defined as the probability of failure-free software 
operation for a specified period time in a specified environment [ANSI91].  Software 
Reliability Engineering is an engineering discipline that 1) seeks to improve the 
reliability of fielded software systems and 2) is used to measure, estimate, and forecast 
the reliability of software systems during various stages of development.  It is this second 
aspect of software reliability engineering we discuss in the following paragraphs. 
 
Background: Software reliability models that can be used to estimate and forecast the 
reliability of software systems during test and operations were initially developed in the 
early 1970s [Mor71, Shoo72].  Since that time, dozens of models have appeared in the 
literature – the most widely used are described in [Lyu96].  These statistical models use a 
software system’s observed failure history (i.e., time since the last failure or number of 
failures observed in an interval of given length) to estimate the current reliability and 
forecast the reliability during future testing or operations.  Detailed information on the 
use of these models is given in [AIAA93], [Lyu96], [Musa87], and [Musa04].  More 
recently, researchers have developed software defect models that relate measurable 
structural characteristics of software systems and/or deve lopment process to the number 
of defects inserted during development [Mun91], [Mun02], [Nik03]. [Nik04], [Neu92].  
The techniques described in [Mun91] use measurable attributes of source code structure; 
the defect models developed in [Mun02], [Nik03], and [Nik04] use measurements of the 
source code’s structural evolution during its development.  The models described in 
[Neu92] use measurable attributes of software artifacts and the development process to 
provide estimates of failure intensity and fault density.  There has also been some recent 
work in relating measurable characteristics of requirements change requests to defect 
content [Schn01]. 
 
Process: After unit testing, software reliability models can be used to better manage 
testing resources.  To use software reliability models during test, the failure history of the 
system under test must be recorded – failure history can be in the form of 1) elapsed time 
since the last failure, or 2) number of failures in a test interval of given length (“interval 
data”).  A software reliability model applied to this type of data will produce estimates 
and forecasts of reliability as well as reliability-related quantities (e.g., time to next 
failure, expected number of failures in the next N intervals).  If a testable reliability 
requirement has been established, a software reliability model can be used to answer the 
following questions: 

1. Has the software achieved the required reliability (to a specified level of confi-
dence)? 

2. How much more testing effort will be required to achieve the required reliability?  
This result can be readily transformed into estimates of the number of testing re-
sources (e.g., personnel, test installations, funding) that will be required. 

3. What will the impact on the system’s reliability be if only a certain fraction of the 
required testing resources will be available? 

Even if testable reliability requirements have not been established, it is possible to use 
these models to help manage the testing effort.  If the software under test is experiencing 



reliability growth (as determined by trend tests such as the Laplace test [Cox66]), then 
reliability models can be applied to forecast the elapsed testing time until the rate at 
which new failures are observed is sufficiently low to proceed with the next testing 
phase. 
 
It is not currently possible to determine a priori which software reliability model will be 
most applicable to a software development effort [Abdel86, Nik95].  However, a number 
of criteria have been developed that can help practitioners identify the most appropriate 
software reliability model at any point during the testing phase.  These are: 

• Prequential likelihood ratio – A “prequential likelihood” (PL) value is com-
puted by inserting the observed times between successive failures (or number of 
failures per test interval) and the estimated parameter values into a likelihood 
function of the form originally used to estimate the model parameters.  Given two 
models A and B and a prior belief that either model is equally appropriate, the 
prequential likelihood ratio defines how much more likely it is that model A will 
produce more accurate estimates than model B.  As the ratio PLA/PLB approaches 
infinity, model A is discarded in favor of model B. 

• Model Bias – this criterion quantifies the extent to which a model consistently 
makes predictions of time-to-next- failure that are larger than those actually ob-
served (“optimistic predictions”) or smaller than those actually observed (“pessi-
mistic predictions”).  For interval data, optimistic predictions are those forecasting 
a smaller number of failures in future test intervals than the number actually ob-
served; pessimistic predictions forecast a larger number of failures than the num-
ber actually observed.  The extent to which a model is biased is computed by 
comparing an ideal distribution of times-to-next- failure (or number of failures per 
interval) to the actual observations using the Kolmogorov-Smirnov test [Mood74] 
– the smaller the test statistic, the less bias exhibited by the model. 

• Model Bias Trend – A model’s bias may change during a testing phase – during 
the early part of software integration testing, for instance, a model may make op-
timistic predictions, while later on it may consistently make pessimistic predic-
tions.  A transformation of the quantities used to compute model bias is used to 
determine the extent to which a model’s bias changes over time.  As with model 
bias, the extent of bias trend is computed by comparing an ideal distribution to the 
actual observations using the Kolmogorov-Smirnov test.  As with model bias, the 
smaller the test statistic, the smaller the extent to which a model’s bias shifts over 
time. 

Detailed descriptions of these criteria are provided in [Abdel86].  Because it is cheap in 
terms of human and computer resources (e.g., less than 10 seconds for a data set of over 
1000 failures) to apply a software reliability model to a set of failure data from a real 
software development effort, we recommend that multiple software reliability models be 
applied to a set of failure data, and that model predictions be updated at regular intervals 
(e.g., weekly), since model preferences can change rapidly during test.  The most 
appropriate model should be selected as described in [Nik95]: 

• Eliminate all models whose goodness of fit falls below a specified threshold (e.g., 
models that don’t fit the data at a 5% or better significance level). 



• Rank the remaining models according to their prequential likelihood values.  
Models with higher prequential likelihood values are more likely to yield accurate 
predictions and will be ranked higher. 

• In the event of a tie, rank the models according to model bias to break the tie.  
Models with lower values of model bias will be ranked higher. 

• In the event of a tie, rank the models according to model bias trend to break the 
tie.  Models with lower values of model bias trend will be ranked higher. 

 
These types of software reliability models have been deployed in commercial and 
government software development efforts.  For example, the NASA Space Transportation 
System Primary Avionics System Software has successfully used software reliability 
models to help decide whether an Operational Increment is ready for release [Kel97, 
Schn92].  One of the best-known uses of these techniques in commercial organizations is 
their use at AT&T to manage the reliability of telephone switching systems [Musa87].  
More recently, they have been used in the development of the FAA’s Wide Angle 
Augmentation System [Keene01].  
 
Since these models require a large enough sample of failure data to order to produce 
parameters estimates that converge, it is not feasible to use them during unit test.  Even if 
it were possible to model the reliabilities of individual units, it would be necessary to 
have detailed knowledge of how the units interact in order to produce a component or 
system-level reliability from the estimates of unit reliability.  These factors limit the 
application of software reliability models to larger software components (e.g., CSCIs). 
 
Most of these models assume that the software under test is relatively mature (i.e., that 
most change is due to fault repair, and there is little functionality being added, removed, 
or changed) [Lyu96].  This means that these models may not be usable during early 
stages of testing, when functionality implemented in the system under test may be 
undergoing significant changes.  A number of models are able to accommodate some 
degree of change to the software under test; one heuristic indicates that if less than 20% 
of the software is being changed, it may still be possible to apply software reliability 
models [Musa87]. 
 
Because all failure-based software reliability models assume that the software under test 
will become more reliable as testing progresses, they should not be applied to software 
that is not experiencing reliability growth during test.  Although it is possible that the  
parameter estimates will converge, it is likely in this case that model results will not be a 
good fit to the data, and will be much more likely to misrepresent the software’s 
estimated and predicted reliability.  Software reliability models should only be applied to 
a software system’s failure history if a trend test, such as the Laplace test, indicates that 
the reliability of the software is increasing during test.  
 
During earlier development phases, defect models that estimate the software’s defect 
content based on its structural characteristics can be used to identify those components 
having a higher fault burden, and hence posing a higher reliability risk than others.  
Recent work at NASA’s Jet Propulsion Laboratory and the University of Idaho have led 



to the development of techniques for estimating a software system’s absolute or 
proportional fault burden at the level of individual functions and methods using 
measurements of the source code’s structural evolution during its development.  An 
initial study, based on measurements of the CASSINI mission flight software’s structural 
evolution, is described in [Nik98].  The results indicated a strong linear relationship 
between a fault index computed from the measurements of structural evolution and the 
number of faults inserted into the software during its development.  This relationship is 
shown in Table 2 below. 
 

N Multiple R Squared Multiple R Standard Error of Estimate 
35 .848 .719 2.087 

Table 2. CASSINI Defect Model Quality 
 
This initial study had two significant limitations, however: 

• The study was relatively small – fewer than 50 observations were used in the 
regression analysis relating the number of faults inserted to the amount of struc-
tural change. 

• The definition of faults that was used was not quantitative. The ad-hoc taxonomy, 
first described in [Nik97], was an attempt to provide an unambiguous set of rules 
for identifying and counting faults. The rules were based on the types of changes 
made to source code in response to failures reported in the system. Although the 
rules provided a way of classifying the faults by type, and attempted to address 
faults at the level of individual modules, they were not sufficient to enable repeat-
able and consistent fault counts by different observers to be made.  The rules in 
and of themselves were unreliable. 

A larger study used fault and software structural information available from the Mission 
Data System (MDS) [Dvo99], a JPL software technology development effort.  A 
quantitative definition of what constitutes a software fault was developed, and a set of 
tools was implemented to automate the identification and measurement of changes that 
had been made in response to reported failures [Mun02, Nik03].  For the MDS, the 
configuration management and failure reporting systems were integrated in such a way 
that it was possible to unambiguously associate a given set of changes to the source code 
with a reported failure for a much larger number of observations than was possible with 
CASSINI, thereby increasing the sample size by an order of magnitude over that for 
CASSINI.  This study also showed a significant relationship between measurements of 
source code structural evolution and the number of faults inserted during development 
[Nik03]; the findings are summarized in Table 3 and Table 4 below. 
 

Source Sum of 
Squares 

Df Mean 
Square 

F Sig. 

Regression 10091546 3 3363848 293 p<0.01 
Residual 6430656 560 11483   
Total 16522203 563    
Table 3. MDS Regression ANOVA 
 
 



N Adjusted R Adjusted R Square  Standard Error of Estimate 
564 .782 .609 107.160 

Table 4. MDS Defect Model Quality 
 
Tools for taking and analyzing the necessary measurements can be inserted into a 
development effort (e.g., as part of the configuration management process) without 
requiring additional effort on the part of the developers [Nik01].  Developers and 
managers can then examine the results to identify those portions of the software having 
the greatest defect potential; these results can be used in conjunction with other 
information, such as the criticality of a component, to help development organizations 
better decide how to allocate scarce defect identification and removal resources.  
 
Discussion: Software reliability estimation and forecasting can be either black-box or 
white-box activities.  “Traditional” software reliability models (i.e., those that operate on 
failure history data obtained during test) do not rely on any measurable characteristics of 
the software system’s structure; they cannot be used to predict the effect of any design 
and/or development process changes on the software system’s reliability.  Defect models 
that can be applied during earlier portions of the development life cycle, on the other 
hand, are white-box activities, since they rely on measurable characteristics of a software 
system’s structure and/or development process to estimate the software’s defect content.  
If proposed changes to the software system’s structure can be measured, these types of 
models may be used to estimate the effect of the changes on the software’s defect 
content.  Unlike traditional models, however, these models cannot be used to directly 
estimate or predict reliability and reliability-related quantities such as failure rates or the 
expected number of defects in future test intervals.  However, since they can be applied 
earlier than traditional software reliability models, they can be used to identify defect-
prone software components earlier in the development cycle, potentially reducing defect 
ident ification and removal costs during later phases. 
 
Tools and Automation 
 
Automated and partially-automated toolsets can reduce the cost and labor of performing 
fault analysis.  There are a number of commercial and government toolsets that assist 
with FMEA and FTA, such as Saphire [Saph], Relex [Relx], and Galileo [Sul99].  We do 
not endorse any specific products here.  Such toolsets often reduce repetitive data entry, 
especially during updates, provide links to libraries of component models, integrate with 
CAD (Computer-Aided Design) tools, calculate failure rates and other statistics, and 
support report-writing.  These same toolsets also support SFMEA and SFTA.  However, 
since the quantitative analysis of software is still an open problem, the automation is 
primarily used for editing, configuration control, and reuse of components (e.g., of 
recurring sub-trees).  Thus, some analysts will prefer the use of more familiar word-
processing or drawing programs when performing SFMEA of SFTA. 
   
A number of software reliability modeling tools implementing traditional software 
models have been developed over the past 10 years.  The most popular of these tools are 
Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS) 



[SMERFS], and Computer-Aided Software Reliability Estimation (CASRE) [CASRE].  
Both of these tools implement a number of the more popular models, allowing practitio-
ners to apply traditional models according to the process discussion in the preceding 
discussion on software reliability engineering.  Practitioners can use either of the two 
types of failure history described in the section on software reliability engineering, as 
each of the tools implements both types of models.  In addition to displaying estimates 
and forecasts of software reliability and reliability-related quantities in graphical and 
tabular form, the tools allow user to determine model applicability using goodness of fit 
tests (Kolmogorov-Smirnov for times between failures data, and Chi-Square for interval 
data) as well as the analyses described in [Abdel86]. 
 
Future Directions 
 
Advances in failure assessment continue to be made.  Three directions are of particular 
interest to ISHEM.   

• Automated generation of FTA/SFTA and FMECA/SFMECA. Progress in model-
based development is enabling automatic production of fault trees and other fail-
ure analysis artifacts from state-based models.  Results to date are preliminary.  
However, we expect the quality and scalability of these automated techniques to 
improve rapidly and hope to see them ready to move into industry in the next five 
to ten years. 

• Product- line fault trees.  As industry and NASA move toward development of 
product lines of similar systems, interest in product- line approaches to failure as-
sessment has grown.  Recent results extend SFTA and SFMECA to product lines 
[Dehl04, Dehl06].  Production of these product- line artifacts takes place at the 
time of  product-line specification or design analysis.  Subsequently, as each  new 
system in the product line is developed, the analyst, with automated tool support, 
prunes the product- line software fault tree to consider only those nodes relevant to 
that particular system.   In this way, the failure-analysis products can be effi-
ciently reused across the systems in a product line.  Similarly, in the future,  li-
braries of SFTA subtrees and SFMECA for reusable software components will be 
assembled and made available to the developer, much as libraries for hardware 
components are today.  

• In software reliability engineering, more work is being done in estimating a 
software system’s defect content earlier in the life cycle.  More researchers are at-
tempting to identify relationships between measurable attributes of specifications 
and the defect content of the implemented system.  A substantial amount of work 
has also been done in developing software reliability models using architectural 
information about a system [Gos01], [Gos01a], [Gokh98].  These models can help 
developers identify architectural components whose correct operation is the most 
critical to the overall reliability of the system; experiments reported in [Gos05] 
indicate that a relatively small number of components have the greatest effect on 
the overall reliability.  Recent work also indicates that relatively non-intrusive in-
strumentation can be developed that will allow practitioners to assess the risk of 
exposure to residual faults in near-real time [Nik03a].  If this type of instrumenta-



tion can be developed, the resulting risk assessment might be used as the basis of 
adaptive software fault tolerance strategies. 

 
Conclusion 
 
We have surveyed several widely used techniques for systems and software failure 
assessment in this paper. The focus has been on ways to identify potential failures, to 
characterize the system consequences of the failures, and to assess the contributing 
causes in order to remove or control them. We have also surveyed techniques for 
estimating and forecasting the reliability of software systems during test, as well as 
techniques for estimating software defect content during earlier development phases (e.g., 
implementation).   We have briefly described how these techniques may be applied 
during a software development effort, and have listed some of the practical constraints on 
their use.  Finally, we have identified current research trends in software safety and 
software reliability engineering that may yield improved failure assessment methods. 
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