Vertex Cover is Fixed-Parameter Tractable

CS 511

Iowa State University

November 28, 2010

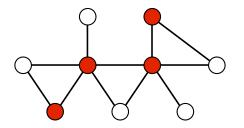
The Vertex Cover Problem

Vertex Cover

Input: An undirected graph G = (V, E) and an integer k.

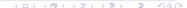
Problem: Is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and

for each edge $(u, v) \in E$ either $u \in S$, or $v \in S$, or both?



Theorem

Vertex Cover is NP-complete.



What if k is small?

- Brute force algorithm: $O(kn^{k+1})$.
 - ▶ Try all $\binom{n}{k} = O(n^k)$ subsets of size k.
 - ▶ Takes O(kn) time to check whether a subset is a vertex cover.
- **Goal:** Limit exponential dependency on k to get a practical algorithm for small k.

Results

Algorithm	Time(n,k)	$Time(10^4,10)$	Feasible?
Brute force	kn^{k+1}	10 ⁴⁵	No
Better	2 ^k kn	10 ⁸	Yes
Kernelized	$2^k k^2 + kn$	$2 \cdot 10^5$	Yes!

If k is small, G must be sparse

Lemma (Bound on the number of edges)

If G has a vertex cover of size k, it has $\leq k(n-1)$ edges.

Proof.

Each vertex can cover at most n-1 edges, so k vertices can cover at most k(n-1) edges.

Every edge must be covered by one of its endpoints

Lemma (Edge coverage)

Let (u, v) be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of G - u and G - v has a vertex cover of size $\leq k - 1$.

Proof.

 \Rightarrow

- Suppose G has a vertex cover S of size $\leq k$.
- S contains either u or v (or both). Assume it contains u.
- $S \setminus \{u\}$ is a vertex cover of G u.

 \Leftarrow

- Suppose S is a vertex cover of G u of size $\leq k 1$.
- Then $S \cup \{u\}$ is a vertex cover of G.

A Fixed-Parameter Algorithm for Vertex Cover

```
boolean Vertex-Cover(G, k):
if (G contains no edges) return true
if (G contains \geq kn edges) return false
 let (u, v) be any edge of G
 a = Vertex-Cover(G - u, k - 1)
 b = Vertex-Cover(G - v, k - 1)
 return a \vee b
```

Analysis

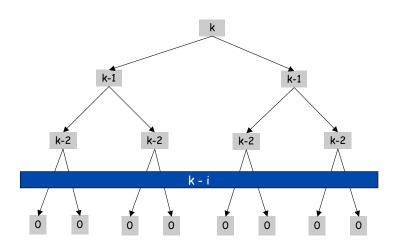
Theorem

Algorithm Vertex-Cover determines if G has a vertex cover of size $\leq k$ in $O(2^k kn)$ time.

Proof.

- Correctness follows from the bound on the number of edges and the edge coverage lemma.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes O(kn) time.

Recursion Tree



Data Reduction

Observation

Suppose G has a vertex cover S of size $\leq k$ and that G contains a vertex v of degree > k. Then, $v \in S$.

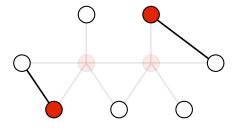
Proof.

If $v \notin S$, then each of v's at least k+1 neighbors would have to be in S, a contradiction.

Data Reduction

Corollary (Modified edge coverage lemma)

Let U be the set of all nodes of degree > k+1 in G. Then G has a vertex cover of size $\leq k$ iff G-U has a vertex cover of size $\leq k-|U|$.



G - U is called the kernel of G (with respect to k-Vertex Cover).

Data Reduction

Lemma (Bound on the number of edges in the kernel)

If G has a vertex cover of size k, then G's kernel has $\leq k^2$ edges.

Proof.

Each vertex in the kernel can cover at most k edges, so k of its vertices can cover at most k^2 edges.

An Improved Fixed-Parameter Algorithm

```
boolean Faster-Vertex-Cover (G, k):
```

```
let U be the set of all nodes of degree \geq k+1 in G G=G-U k=k-|U| if (G has more than k^2 edges) return false return Vertex-Cover(G-U,k-|U|)
```

Analysis

Theorem

Algorithm Faster-Vertex-Cover determines if G has a vertex cover of size $\leq k$ in $O(2^k k^2 + nk)$ time.

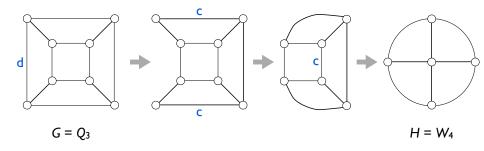
Proof.

- Correctness follows from the correctness of algorithm Vertex-Cover, the bound on the number of edges in the kernel, and the modified edge coverage lemma.
- The running time follows from that of algorithm Vertex-Cover and the fact that the input graph has at most k^2 edges.

Graph Minors

Definition

Graph H is a minor of graph G if H is isomorphic to a graph that can be obtained by zero or more edge contractions on a subgraph of G.



Minor-Closed Families of Graphs

Definition

A family $\mathcal F$ of graphs is minor-closed if every minor of a graph in $\mathcal F$ also belongs to $\mathcal F$.

Some Minor-Closed Families

- Forests.
- Graphs with vertex cover of size at most k.
- Planar graphs.
- Graphs with feedback vertex set of size at most k.
- Graphs of treewidth at most k.

Forbidden Minors

Theorem (Forbidden Minor Theorem — Robertson & Seymour)

Let $\mathcal F$ is a minor-closed family of graph and let $\mathcal S$ be the set of graphs that are not in $\mathcal F$. Then, there exists a finite set $\mathcal H$ of minimal elements in $\mathcal S$.

- The members of $\mathcal H$ are the excluded minors (or forbidden minors, or minor-minimal obstructions) for $\mathcal F$.
- ullet gives a forbidden graph characterization of \mathcal{F} .
 - $ightharpoonup \mathcal{F}$ is precisely the set of graphs that do not have any graph in \mathcal{H} as a minor.

Finding Forbidden Minors

Theorem (Finding Minors — Robertson & Seymour)

For each fixed graph H, there is a $O(n^3)$ algorithm to test whether an n-vertex graph G has H as a minor. The constant factor in the running time depends only on H

Thus, for every minor-closed family \mathcal{F} , there is polynomial time algorithm to test whether a graph G belongs to \mathcal{F} :

• For each forbidden minor H of \mathcal{F} , check whether G contains H.

Remarks

- The proof of the Forbidden Minor Theorem is non-constructive: It does not provide the obstruction set.
- The constant factor in the Minor-Finding Theorem depends superpolynomially on the size of the excluded minors.
- Robertson & Seymour's theorems are nevertheless useful.
 - Show the existence of a polynomial-time solution.
 - Suggest that a practical algorithm might exist.
 - May not even need the obstruction set.
 - E.g., Vertex Cover.