Lecture 6. Parsing (syntax analysis)

Wei Le

2015.9
The parsing problem: generate a parse tree whose in order traversal is the string

- top down parsers
- recursive descendant parsers
 - a naive recursive descendant parser: try production rules to generate a string to see if the prefix matches the prefix of the token stream
 - predictive parsers
Predictive Parsers

- A predictive parser is a recursive descent parser that does not require backtracking.
- Like recursive-descent but parser can predict which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
 - In practice, LL(1) is used
LL(1) Languages

- In recursive-descent parsers, for each non-terminal and input token there may be a choice of production.
- LL(1) means that for each non-terminal and token there is only one production that could lead to success:
 - Can be specified as a 2D table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
 - At any time, you select a rule to build the next children for the parse tree, you have only one choice (with the help of look ahead the next token). Here, the non-terminal is an internal node of the parse tree (parent)
What if there are common prefixes?

- Recall the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

- Impossible to predict because
 - For \(T \) two productions start with \text{int}
 - For \(E \) it is not clear how to predict

- A grammar must be \text{left-factored} before use for predictive parsing
Left-Factoring Example

- Recall the grammar
 \[
 E \rightarrow T + E \mid T \\
 T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
 \]

- Factor out common prefixes of productions
 \[
 E \rightarrow T \times \\
 X \rightarrow + E \mid \epsilon \\
 T \rightarrow (E) \mid \text{int} \ Y \\
 Y \rightarrow \ast T \mid \epsilon
 \]
Table Driven Predictive Parser

- Automatically compute PREDICT table (also called Parsing Table) from grammar
- \(\text{PREDICT(} \text{nonterminal, input-token}) \Rightarrow \text{right hand side} \)
LL(1)

- If PREDICT table has at most one entry per cell
- Then the grammar is LL(1)
- There is always exactly one right choice (So its fast to parse and easy to implement)
- If multiple entries in each cell
 - Ex: common prefixes, ambiguous
 - Can rewrite grammar (sometimes)
 - Can patch table manually, if you know what to do
 - Or can use more powerful parsing technique
LL(1) Parsing Table: an Example

- **Left-factored grammar**

 \[

 \begin{align*}
 E & \rightarrow TX \\
 T & \rightarrow (E) | \text{int } Y \\
 X & \rightarrow +E | \varepsilon \\
 Y & \rightarrow *T | \varepsilon
 \end{align*}

 \]

- **The LL(1) parsing table** ($\$ \text{ is a special end marker}$):

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+E</td>
<td></td>
<td></td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*T</td>
<td>\varepsilon</td>
<td>\varepsilon</td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
</tbody>
</table>
Table Driven Predictive Parser
LL(1) Parsing Table: How to use it?

• Consider the [E, int] entry
 – “When current non-terminal is E and next input is int, use production $E \rightarrow TX$
 – This production can generate an int in the first place

• Consider the [Y,+] entry
 – “When current non-terminal is Y and current token is +, get rid of Y”
 – We’ll see later why this is so
LL(1) Parsing Table Example

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - “There is no way to derive a string starting with * from non-terminal E”
LL(1) Parsing Algorithms

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And choose the production shown at $[S, a]$
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input
initialize stack = S and next (pointer to tokens)
repeat
 case stack of
 X, rest : if $T[X, *next] = Y_1 \ldots Y_n$
 then stack $\leftarrow Y_1 \ldots Y_n$ rest;
 else error ();
 t, rest : if $t == *next$ ++
 then stack \leftarrow rest;
 else error ();
until stack $== <$ >
LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>int * int $</td>
<td>$T X$</td>
</tr>
<tr>
<td>$T X$</td>
<td>int * int $</td>
<td>int $</td>
</tr>
<tr>
<td>int $Y X$</td>
<td>int * int $</td>
<td>* T</td>
</tr>
<tr>
<td>$Y X$</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>$* T X$</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>$T X$</td>
<td>int $</td>
<td>int $</td>
</tr>
<tr>
<td>int $Y X$</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>$Y X$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>
Challenge: Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined

- Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary

- We want to generate parsing tables from CFG
Top Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

int * int + int
Top Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

```
int * T
    +
  E
```

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

```
int * int + int
```
Top Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

```
  E
   +
  T
```

- The leaves at any point form a string βA_γ
 - β contains only terminals
 - The input string is $\beta b\delta$
 - The prefix β matches
 - The next token is b

```
int * int + int
```
Top Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

```
  E
 / \
/   \
T   E
 /   \
| int * T
 |   \
| int \
|   int
```

- The leaves at any point form a string βA_γ
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b
Constructing Predictive Parsing Tables

- Consider the state $S \rightarrow^* \beta A \gamma$
 - With b the next token
 - Trying to match $\beta b \delta$

There are two possibilities:

1. b belongs to an expansion of A
 - Any $A \rightarrow \alpha$ can be used if b can start a string derived from α

In this case we say that $b \in \text{First}(\alpha)$

Or...
2. \textit{b does not belong to an expansion of A}
 - The expansion of \textit{A} is empty and \textit{b} belongs to an expansion of \textit{γ} (e.g., \textit{bω})
 - Means that \textit{b} can appear after \textit{A} in a derivation of the form \textit{S →* βAbω}
 - We say that \textit{b ∈ Follow(A)} in this case

 - What productions can we use in this case?
 • Any \textit{A → α} can be used if \textit{α} can expand to \textit{ε}
 • We say that \textit{ε ∈ First(A)} in this case
Computing First Sets

Definition \(\text{First}(X) = \{ b \mid X \rightarrow^* b\alpha \} \cup \{\varepsilon \mid X \rightarrow^* \varepsilon \} \)

1. \(\text{First}(b) = \{ b \} \)

2. For all productions \(X \rightarrow A_1 \ldots A_n \)

 - Add \(\text{First}(A_1) - \{\varepsilon\} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_1) \)

 - Add \(\text{First}(A_2) - \{\varepsilon\} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_2) \)

 - \(\ldots \)

 - Add \(\text{First}(A_n) - \{\varepsilon\} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_n) \)

 - Add \(\varepsilon \) to \(\text{First}(X) \)

 (ignore \(A_i \) if it is \(X \))
First Sets Example

• Recall the grammar

\[E \rightarrow T X \]
\[T \rightarrow (E) \mid \text{int} \ Y \]
\[X \rightarrow + E \mid \varepsilon \]
\[Y \rightarrow * T \mid \varepsilon \]

• First sets

\[\text{First}(()) = \{ () \} \]
\[\text{First}(()) = \{ () \} \]
\[\text{First}(\text{int}) = \{ \text{int} \} \]
\[\text{First}(+) = \{ + \} \]
\[\text{First}(*) = \{ * \} \]
\[\text{First}(T) = \{ \text{int}, () \} \]
\[\text{First}(E) = \{ \text{int}, () \} \]
\[\text{First}(X) = \{ +, \varepsilon \} \]
\[\text{First}(Y) = \{ *, \varepsilon \} \]
Computing Follow Sets

Definition \(\text{Follow}(X) = \{ b \mid S \rightarrow^* \beta X b \omega \} \)

1. Compute the First sets for all non-terminals first
2. Add \$\ to \text{Follow}(S) (if \(S \) is the start non-terminal)

3. For all productions \(Y \rightarrow \ldots X A_1 \ldots A_n \)
 - Add First\((A_1) - \{\varepsilon\} \) to \text{Follow}(X). Stop if \(\varepsilon \not\in \text{First}(A_1) \)
 - Add First\((A_2) - \{\varepsilon\} \) to \text{Follow}(X). Stop if \(\varepsilon \not\in \text{First}(A_2) \)
 - \ldots
 - Add First\((A_n) - \{\varepsilon\} \) to \text{Follow}(X). Stop if \(\varepsilon \not\in \text{First}(A_n) \)
 - Add \text{Follow}(Y) to \text{Follow}(X)
Follow Sets Example

- Recall the grammar
 \[E \rightarrow TX \]
 \[T \rightarrow (E) | \text{int} \ Y \]
 \[X \rightarrow +E | \varepsilon \]
 \[Y \rightarrow \ast T | \varepsilon \]
- Follow sets
 \[
 \text{Follow(} + \text{)} = \{ \text{int, (} \} \\
 \text{Follow(} (\text{)} = \{ \text{int, (} \} \\
 \text{Follow(} \times \text{)} = \{ \$,) \} \\
 \text{Follow(} \text{)} = \{ +,) , \$ \} \\
 \text{Follow(} \text{int}) = \{ \ast, + ,) , \$ \}
 \]
Constructing a Parsing Table

- In the first row, list all the terminals
- In the first column, list all the non-terminals
- Compute First Sets and Follow Sets for all the non-terminals (and thus terminals)
- For each production rule, if the right side is not ϵ, if the terminal listed in the first row is in the First Sets of the nonterminal listed in the first column, put the production rules in the tabular
- For each production rule, if the right side is ϵ, if the terminal listed in the first row is in the Follow Sets of the nonterminal listed in the first column, put the production rules in the tabular
Constructing a Parsing Table

- Construct a parsing table T for CFG G

- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in \text{First}(\alpha)$ do
 - $T[A, b] = \alpha$
 - If $\alpha \Rightarrow^* \epsilon$, for each $b \in \text{Follow}(A)$ do
 - $T[A, b] = \alpha$
Constructing a Parsing Table

• Recall the grammar

 $E \rightarrow T \times$
 $T \rightarrow (E) \mid \text{int} \; Y$
 $X \rightarrow + \; E \mid \varepsilon$
 $Y \rightarrow * \; T \mid \varepsilon$

 • Where in the line of Y we put $Y \rightarrow * \; T$?
 - In the lines of First($*T$) = { * }

 • Where in the line of Y we put $Y \rightarrow \varepsilon$?
 - In the lines of Follow(Y) = { $, +,)$ }
LL(1) Languages

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables
• For some grammars there is a simple parsing strategy
 - Predictive parsing (LL(1))
 - Once you build the LL(1) table, you can write the parser by hand

- A predictive parser runs in linear time.
- Recursive descent with backtracking is a technique that determines which production to use by trying each production in turn.
- Parsers that use recursive descent with backtracking may require exponential time.
Review: terms so far

- LL(k) parser
- LL(1) grammar
- LL(1) language
- Parsing table
- Top down parsing
- Recursive decedent parser
- Predictive parser