Local Optimization

CS440/540
Why Intermediate Languages?

- When to perform optimizations
 - On AST
 - Pro: Machine independent
 - Con: Too high level
Why Intermediate Languages?

- When to perform optimizations
 - On AST
 - Pro: Machine independent
 - Con: Too high level
 - On assembly language
 - Pro: Exposes optimization opportunities
 - Con: Machine dependent
 - Con: Must reimplement optimizations when retargetting
Why Intermediate Languages?

- When to perform optimizations
 - On AST
 - Pro: Machine independent
 - Con: Too high level
 - On assembly language
 - Pro: Exposes optimization opportunities
 - Con: Machine dependent
 - Con: Must reimplement optimizations when retargeting
 - On an intermediate language
 - Pro: Machine independent
 - Pro: Exposes optimization opportunities
 - Con: One more language to worry about
An Intermediate Language

\[
P \rightarrow S \ P | \epsilon \\
S \rightarrow id := id \ op \ id \\
| \ id := op \ id \\
| \ id := id \\
| \ push \ id \\
| \ id := pop \\
| \ if \ id \ relop \ id \ goto \ L \\
| \ L: \\
| \ jump \ L
\]

- id’s are register names
- Constants can replace id’s
- Typical operators: +, -, *
Two Useful Concepts

• **Basic blocks (BB)**
 - Split code into basic atomic units

• **Control-flow graphs (CFG)**
 - Connect the BBs together as a directed graph

• **Useful for representing intermediate code**
 - Use a graphical representation
 - Make control-flow explicit
Definition: Basic Blocks

- A **basic block** is a **maximal** sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)
Definition: Basic Blocks

- A **basic block** is a **maximal** sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

- Idea:
 - Cannot jump in a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - Each instruction in a basic block is executed after all the preceding instructions have been executed
Basic Block Example

- Consider the basic block
 1. \(L:\)
 2. \(t := 2 \times x \)
 3. \(w := t + x \)
 4. if \(w > 0 \) goto \(L' \)
Basic Block Example

• Consider the basic block
 1. \(L: \)
 2. \(t := 2 \times x \)
 3. \(w := t + x \quad \Rightarrow \quad w := 3 \times x \)
 4. \(\text{if } w > 0 \text{ goto } L' \)

• No way for (3) to be executed without (2) having been executed right before
 - We can change (3) to \(w := 3 \times x \)
 - Can we eliminate (2) as well?
Definition: Control-Flow Graphs

- A **control-flow graph** is a directed graph with
 - Basic blocks as nodes
 - An edge from block A to block B if the execution can flow from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is `jump L_B`
 - E.g., the execution can fall-through from block A to block B

- Frequently abbreviated as CFG
Control-Flow Graphs: Example

\[x := 1 \\
 i := 1 \]

\[L: \\
 x := x \times x \\
 i := i + 1 \\
 if \ i < 10 \ goto \ L \]
Control-Flow Graphs: Example

- The body of a method (or procedure) can be represented as a control-flow graph
- There is one initial node
- All “return” nodes are terminal
Optimization Overview

- Optimization seeks to improve a program's utilization of some resource
 - Execution time (most often)
 - Code size
 - Network messages sent
 - Battery power used, etc.
Optimization Overview

- Optimization seeks to improve a program’s utilization of some resource
 - Execution time (most often)
 - Code size
 - Network messages sent
 - Battery power used, etc.
- Optimization should not alter what the program computes – correctness
 - The answer must still be the same
A Classification of Optimizations

- For languages like C and Cool there are three granularities of optimizations
A Classification of Optimizations

• For languages like C and Cool there are three granularities of optimizations
 1. Local optimizations
 • Apply to a basic block in isolation
A Classification of Optimizations

- For languages like C and Cool there are three granularities of optimizations
 1. **Local optimizations**
 - Apply to a basic block in isolation
 2. **Global optimizations** (a.k.a. intra-procedural)
 - Apply to a control-flow graph (method body) in isolation
A Classification of Optimizations

- For languages like C and Cool there are three granularities of optimizations
 1. **Local optimizations**
 - Apply to a basic block in isolation
 2. **Global optimizations** (a.k.a. intra-procedural)
 - Apply to a control-flow graph (method body) in isolation
 3. **Inter-procedural optimizations**
 - Apply across method boundaries
A Classification of Optimizations

• For languages like C and Cool there are three granularities of optimizations
 1. **Local optimizations**
 • Apply to a basic block in isolation
 2. **Global optimizations** (a.k.a. intra-procedural)
 • Apply to a control-flow graph (method body) in isolation
 3. **Inter-procedural optimizations**
 • Apply across method boundaries

• Most compilers do (1), many do (2) and very few do (3)
Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimization known
Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimization known.
- Why?
 - Some optimizations are hard to implement.
 - Some optimizations are costly in terms of compilation time.
 - The fancy optimizations are both hard and costly.
Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimization known.
- Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in terms of compilation time
 - The fancy optimizations are both hard and costly
- The goal
 - Maximum improvement with minimum cost
Local Optimizations

- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question
Algebraic Simplification

- Some statements can be deleted
 \[
 x := x + 0 \\
 x := x * 1
 \]
Algebraic Simplification

• Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]

• Some statements can be simplified
 \[x := x \times 0 \quad \Rightarrow \quad x := 0 \]
Algebraic Simplification

• Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]

• Some statements can be simplified
 \[x := x \times 0 \quad \Rightarrow \quad x := 0 \]
 \[y := y \times 2 \quad \Rightarrow \quad y := y \times y \]
Algebraic Simplification

- Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]

- Some statements can be simplified
 \[x := x \times 0 \quad \Rightarrow \quad x := 0 \]
 \[y := y \times 2 \quad \Rightarrow \quad y := y \times y \]
 \[x := x \times 8 \quad \Rightarrow \quad x := x \ll 3 \]
 \[x := x \times 15 \quad \Rightarrow \quad ? \]
Algebraic Simplification

- Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]
- Some statements can be simplified
 \[x := x \times 0 \quad \Rightarrow \quad x := 0 \]
 \[y := y \times 2 \quad \Rightarrow \quad y := y \times y \]
 \[x := x \times 8 \quad \Rightarrow \quad x := x \ll 3 \]
 \[x := x \times 15 \quad \Rightarrow \quad t := x \ll 4; \quad x := t - x \]
 (on some machines \(\ll \) is faster than \(\times \); but not on all!)
Constant Folding

- Operations on constants can be computed at compile time
- In general, if there is a statement
 \[x := y \text{ op } z \]
 - And \(y \) and \(z \) are constants
 - Then \(y \text{ op } z \) can be computed at compile time
Constant Folding

- Operations on constants can be computed at compile time
- In general, if there is a statement
 \[x := y \text{ op } z \]
 - And \(y \) and \(z \) are constants
 - Then \(y \text{ op } z \) can be computed at compile time
- Example: \(x := 2 + 2 \Rightarrow x := 4 \)
Constant Folding

- Operations on constants can be computed at compile time
- In general, if there is a statement
 \[x := y \text{ op } z \]
 - And \(y \) and \(z \) are constants
 - Then \(y \text{ op } z \) can be computed at compile time
- Example: \(x := 2 + 2 \Rightarrow x := 4 \)
- Example: if \(2 < 0 \) jump \(L \) can be deleted
Constant Folding

- Operations on constants can be computed at compile time
- In general, if there is a statement
 \[x := y \text{ op } z \]
 - And \(y \) and \(z \) are constants
 - Then \(y \text{ op } z \) can be computed at compile time
- Example: \(x := 2 + 2 \Rightarrow x := 4 \)
- Example: if \(2 < 0 \) jump L can be deleted
- When might constant folding be dangerous?
Flow of Control Optimizations

- Eliminating unreachable code:
 - Code that is unreachable in the control-flow graph
 - Basic blocks that are not the target of any jump or "fall through" from a conditional
 - Such basic blocks can be eliminated

- Why would such basic blocks occur?
Flow of Control Optimizations

- Eliminating unreachable code:
 - Code that is unreachable in the control-flow graph
 - Basic blocks that are not the target of any jump or “fall through” from a conditional
 - Such basic blocks can be eliminated
- Why would such basic blocks occur?
- Removing unreachable code makes the program smaller
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)
Single Assignment Form

- Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment
Single Assignment Form

- Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment
- Intermediate code can be rewritten to be in single assignment form

 \[
 \begin{align*}
 x & := z + y \\
 a & := x \\
 x & := 2 \times x
 \end{align*}
 \]

 \[
 \begin{align*}
 b & := z + y \\
 a & := b \\
 x & := 2 \times b
 \end{align*}
 \]

 \(b\) is a fresh register

- More complicated in general, due to loops
Common Subexpression Elimination

- **Assume**
 - Basic block is in single assignment form
 - A definition $x :=$ is the first use of x in a block
Common Subexpression Elimination

• Assume
 - Basic block is in single assignment form
 - A definition $x :=$ is the first use of x in a block
• All assignments with same rhs compute the same value
• Example:

 $x := y + z$ $x := y + z$
 \cdots \Rightarrow \cdots
 $w := y + z$ $w := x$

 (the values of x, y, and z do not change in the ... code)
Copy Propagation

• If \(w := x \) appears in a block, all subsequent uses of \(w \) can be replaced with uses of \(x \)
Copy Propagation

- If \(w := x \) appears in a block, all subsequent uses of \(w \) can be replaced with uses of \(x \).
- Example:

\[
\begin{align*}
 b & := z + y \\
 a & := b \\
 x & := 2 \times a
\end{align*}
\]

\[
\begin{align*}
 b & := z + y \\
 a & := b \\
 x & := 2 \times b
\end{align*}
\]
Copy Propagation

- If $w := x$ appears in a block, all subsequent uses of w can be replaced with uses of x

- Example:

 $b := z + y$ \hspace{1cm} $b := z + y$

 $a := b$ \hspace{1cm} $a := b$

 $x := 2 * a$ \hspace{1cm} $x := 2 * b$

- This does not make the program smaller or faster but might enable other optimizations
 - Constant folding
 - Dead code elimination
Copy Propagation and Constant Folding

- Example:
 \[a := 5 \]
 \[x := 2 \times a \]
 \[y := x + 6 \]
 \[t := x \times y \]
Copy Propagation and Constant Folding

- Example:

 \[
 \begin{align*}
 a &:= 5 \\
 x &:= 2 \times a \\
 y &:= x + 6 \\
 t &:= x \times y
 \end{align*}
 \Rightarrow
 \begin{align*}
 a &:= 5 \\
 x &:= 10 \\
 y &:= 16 \\
 t &:= x \ll 4
 \end{align*}
 \]
Copy Propagation and Dead Code Elimination

If

\(w := \text{rhs} \) appears in a basic block
\(w \) does not appear anywhere else in the program
Copy Propagation and Dead Code Elimination

If

\[w := \text{rhs} \text{ appears in a basic block} \]

\[w \text{ does not appear anywhere else in the program} \]

Then

the statement \[w := \text{rhs} \] is dead and can be eliminated

- Dead = does not contribute to the program’s result
Copy Propagation and Dead Code Elimination

If

\[w := \text{rhs} \text{ appears in a basic block} \]
\[w \text{ does not appear anywhere else in the program} \]

Then

the statement \[w := \text{rhs} \] is dead and can be eliminated

- Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)

\[x := z + y \]
\[b := z + y \]
\[a := x \quad \Rightarrow \quad a := b \]
\[b := z + y \]
\[x := 2 * a \quad \Rightarrow \quad x := 2 * b \]
Applying Local Optimizations

- Each local optimization does very little by itself
Applying Local Optimizations

- Each local optimization does very little by itself
- Typically optimizations interact
 - Performing one optimizations enables other opt.
Applying Local Optimizations

- Each local optimization does very little by itself
- Typically optimizations interact
 - Performing one optimizations enables other opt.
- Typical optimizing compilers repeatedly perform optimizations until no improvement is possible
 - The optimizer can also be stopped at any time to limit the compilation time
An Example

- Initial code:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f
An Example

- **Algebraic optimization:**

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \times 2 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

- **Algebraic optimization:**

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \ll 1 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

- Copy propagation:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \ll 1 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

- Copy propagation:

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := x \times x \\
 e := 3 \ll 1 \\
 f := a + d \\
 g := e \times f
 \]
An Example

- Constant folding:

 \[
 \begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= x \times x \\
 e &:= 3 \ll 1 \\
 f &:= a + d \\
 g &:= e \times f
 \end{align*}
 \]
An Example

- **Constant folding:**

  ```
  a := x * x
  b := 3
  c := x
  d := x * x
  e := 6
  f := a + d
  g := e * f
  ```
An Example

- Common subexpression elimination:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 6 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

- Common subexpression elimination:

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]
An Example

- Copy propagation:

 \[
 \begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= a \\
 e &:= 6 \\
 f &:= a + d \\
 g &:= e \times f
 \end{align*}
 \]
An Example

• Copy propagation:
 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := a \]
 \[e := 6 \]
 \[f := a + a \]
 \[g := 6 \times f \]
An Example

- Dead code elimination:

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a + a \\
 g := 6 \times f
 \]
An Example

• Dead code elimination:
 \[a := x \times x \]

\[f := a + a \]
\[g := 6 \times f \]

• This is the final form
Peephole Optimizations on Assembly Code

- The optimizations presented before work on intermediate code
 - They are target independent
 - But they can be applied on assembly language also
- **Peephole optimization** is an effective technique for improving assembly code
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

- Write peephole optimizations as replacement rules
 \[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]
 where the rhs is the improved version of the lhs
Peephole Optimizations (Cont.)

- Write peephole optimizations as replacement rules

\[i_1, ..., i_n \rightarrow j_1, ..., j_m \]

where the rhs is the improved version of the lhs

- Example:

 move $a \ $b, move $b \ $a \rightarrow \text{move } $a \ $b

 - Works if move $b \ $a is not the target of a jump
Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement rules

 \[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]

 where the rhs is the improved version of the lhs

• Example:

 move a b, move b $a \rightarrow$ move a b

 - Works if move b a is not the target of a jump

• Another example:

 addiu a a i, addiu a a $j \rightarrow$ addiu a a $i+j$
Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: `addiu $a $b 0` → `move $a $b`
 - Example: `move $a $a` → Empty
 - These two together eliminate `addiu $a $a 0`
Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: addiu $a $b 0 → move $a $b
 - Example: move $a $a → Empty
 - These two together eliminate addiu $a $a 0

- Just like for local optimizations, peephole optimizations need to be applied repeatedly to get maximum effect
Local Optimizations: Notes

• Intermediate code is helpful for many optimizations
• Many simple optimizations can still be applied on assembly language
• “Program optimization” is grossly misnamed
 - Code produced by “optimizers” is not optimal in any reasonable sense
 - “Program improvement” is a more appropriate term