Exploiting Implicit Beliefs to Resolve Sparse Usage Problem in Usage-Based Specification Mining

Samantha S. Khairunnesa
Iowa State University

Tien N. Nguyen
The University of Texas at Dallas

Hoan A. Nguyen
Iowa State University

Hridesh Rajan
Iowa State University

Supported in part by the NSF grants CCF-15-18897, CNS-15-13263, Grant No. CCF-17-23215, Grant No. CCF-17-23432, and Grant No. CNS-17-23198.
Why do We Need Specification?

- Application programming interfaces (APIs) provided by frameworks and libraries serves as building blocks in modern software development.

- API specification could help developers effectively utilize the APIs and reduce maintenance costs.

- However, currently the efforts needed to write behavioral specifications can be quite high.
How to Correctly Use an API?

```java
public static double[] getOLSRegression(XYDataset data, int series) throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
```
Recent Approaches

- Mining Preconditions of APIs in Large-Scale Code Corpus (Nguyen et al., FSE 2014)

```java
public static double[] getOLSRegression(XYDataset data, int series) {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ... 
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ... } 
    ... }
```
Recent Approaches

• Mining Preconditions of APIs in Large-Scale Code Corpus (Nguyen et al., FSE 2014)

```java
public static double[] getOLSRegression(XYDataset data, int series) {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
}
```
Sparse Usage Problem

• Not all important APIs are very widely-used.
• Few (potential) preconditions are present as explicit guard conditions.

```java
public static double[] getOLSRegression(XYDataset data, int series)
    throws RegressionException {
    int n = data getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
```
Goal: Overcome Sparse Usage Problem

```java
public static double[] getOLSRegression(XYDataset data, int series) throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Series has less than 2 points.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
}
```

How to filter project-specific conditions?
Goal: Overcome Sparse Usage Problem

How to filter project-specific conditions?

How to fill missing data?

```java
public static double[] getOLSRegression(XYDataset data, int series)
    throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException();
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
```
Leverage Implicit Beliefs

```java
public static double[] getOLSRegression(XYDataset data, int series)
    throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
}
```
Leverage Implicit Beliefs

- An implicit belief (IB) is the knowledge implicitly derived from the fact about the code.

```java
public static double[] getOLSRegression(XYDataset data, int series) {
    int n = data getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ... 
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ... }
    ... }
```
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining

For each M_i

Method, M_n

Recognize Code Elements

CFG

A a = new A();

b \geq 0

API(a, b); foo();

Derive Implicit Beliefs

CFG

Start

A a = new A();

b \geq 0

API(a, b); foo();

Propagate Implicit Beliefs

CFG

Start

A a = new A();

a != null

b \geq 0

API(a, b); foo();
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining

For each Method, M_n

For each C_{F_i}

Recognize Code Elements

A $a = \text{new} \ A();$

$b \geq 0$

API(a, b); foo();

Derive Implicit Beliefs

A $a = \text{new} \ A();$

$b \geq 0$

API(a, b); foo();

Propagate Implicit Beliefs

A $a = \text{new} \ A();$

API(a, b); foo();

a!null

a!null

16
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining

Method, M_n

For each M_i

CFG

Start

$A \ a = \text{new} \ A();$

$b \geq 0$

API(a, b); foo();

Recognize Code Elements

For each CFG_i

CFG

Start

$A \ a = \text{new} \ A();$

$b \geq 0$

API(a, b); foo();

Derive Implicit Beliefs

Derive Implicit Beliefs

Derive Implicit Beliefs

Extract Conditions

$M_1 \ \langle API_1, \{EC_1, \ldots, \{IB_1, \ldots\}\}, \ldots \rangle$

$M_2 \ \langle API_2, \{EC_2, \ldots, \{IB_2, \ldots\}\}, \ldots \rangle$

$M_i \ \langle API_i, \{b \geq 0, \ldots, \{a \neq \text{null}, \ldots\}\}, \ldots \rangle$

$M_n \ \langle API_n, \{EC_n, \ldots, \{IB_n, \ldots\}\}, \ldots \rangle$

Propagate Implicit Beliefs

For each CFG_i

CFG

Start

$A \ a = \text{new} \ A();$

$b \geq 0$

API(a, b); foo();

$M_1 \ \langle API_1, \{EC_1, \ldots, \{IB_1, \ldots\}\}, \ldots \rangle$

$M_2 \ \langle API_2, \{EC_2, \ldots, \{IB_2, \ldots\}\}, \ldots \rangle$

$M_i \ \langle API_i, \{b \geq 0, \ldots, \{a \neq \text{null}, \ldots\}\}, \ldots \rangle$

$M_n \ \langle API_n, \{EC_n, \ldots, \{IB_n, \ldots\}\}, \ldots \rangle$

Propagate Implicit Beliefs

18
Approach to Exploit Implicit Beliefs to Improve Usage-Based Mining

For each Method, \(M_n\)

- For each \(M_i\)
 - Recognize Code Elements
 - \(A = \text{new } A();\)
 - \(b \geq 0\)
 - API(a, b);
 - foo();

- Derive Implicit Beliefs
 - \(b \geq 0\)
 - API(a, b);
 - foo();

- Propagate Implicit Beliefs

- Mine Preconditions
 - \(M_1\) \(<\text{API}_1, \{EC_1, \ldots\}, \{IB_1, \ldots\}>, \ldots\)
 - \(M_2\) \(<\text{API}_2, \{EC_2, \ldots\}, \{IB_2, \ldots\}>, \ldots\)
 - \(M_i\) \(<\text{API}_i, \{b \geq 0, \ldots\}, \{a! = \null, \ldots\}>, \ldots\)
 - \(M_n\) \(<\text{API}_n, \{EC_n, \ldots\}, \{IB_n, \ldots\}>, \ldots\>
Example

```java
public static double[] getOLSRegression(XYDataset data, int series)
    throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
```
Example

```java
public static double[] getOLSRegression(XYDataset data, int series)
    throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ... 
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ... 
    }
    ... 
}
```

Discard n >= 2
public static double[] getOLSRegression(XYDataset data, int series)
 throws RegressionException {
 int n = data getItemCount(series);
 if (n < 2) {
 throw new RegressionException("Not enough data to calculate regression.");
 }
 ...
 for (int i = 0; i < n; i++) {
 double x = data.getXValue(series, i);
 ...
 }
 ...
 }

Discard n >= 2 i >= 0
Why Context is Important?

```java
public static double[] getOLSRegression(XYDataset data, int series) throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
```
Why Context is Important?

```java
public static double[] getOLSRegression(XYDataset data, int series) throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
}
```
Why Context is Important?

```java
public static double[] getOLSRegression(XYDataset data, int series) throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
```
Why Context is Important?

```java
public void computeRegression(XYDataset data) {
    int series = data.getSeriesCount();
    ...
    for (int i = 0; i < series; i++) {
        regression = getOLSRegression(data, i);
        ...
    }
    ...
}

public static double[] getOLSRegression(XYDataset data, int series) throws RegressionException {
    int n = data.getItemCount(series);
    if (n < 2) {
        throw new RegressionException("Not enough data to calculate regression.");
    }
    ...
    for (int i = 0; i < n; i++) {
        double x = data.getXValue(series, i);
        ...
    }
    ...
}
```
Classification of Code Elements to Derive Implicit Beliefs
Classification of Code Elements to Derive Implicit Beliefs

Program
 Data
 Computation
 Control
Classification of Code Elements to Derive Implicit Beliefs

Program

Data
- Constant
- Primitive Type
- Array Type
- Reference Type

Computation

Control
Classification of Code Elements to Derive Implicit Beliefs

Program

Data

Constant

Primitive Type

Array Type

Reference Type

Computation

Constant Propagation

B1

Control
Classification of Code Elements to Derive Implicit Beliefs

Program

Data
- Constant
- Primitive Type
- Array Type
- Reference Type

Computation
- Unary Operation
- Binary Operation

Control

Constant Propagation

B1
Classification of Code Elements to Derive Implicit Beliefs

Program

Data
- Constant
- Primitive Type
- Array Type
- Reference Type

Computation
- Unary Operation
- Binary Operation

Control

Constant Propagation
- Constant
- Negation
- Absolute

Iowa State University
Classification of Code Elements to Derive Implicit Beliefs

Program

Data
- Constant
- Primitive Type
- Array Type
- Reference Type

Computation
- Unary Operation
- Binary Operation

Control
- Normal Flow
- Exception Flow

Data

Computation

Constant Propagation
- Constant
- Primitive Type
- Array Type
- Reference Type

Unary Operation
- Negation
- Absolute

Binary Operation

Algorithm:

1. Classify Code Elements:
 - Data: Constant, Primitive Type, Array Type, Reference Type
 - Computation: Unary Operation, Binary Operation

2. Derive Implicit Beliefs:
 - Constant Propagation
 - Constant
 - Negation
 - Absolute
Classification of Code Elements to Derive Implicit Beliefs

Program

Data
- Constant
- Primitive Type
- Array Type
- Reference Type

Computation
- Unary Operation
- Binary Operation

Control
- Normal Flow
- Exception Flow

Structured Control Flow

Non-local Control Flow

Constant Propagation

Negation

Absolute

Unary Operation
- Constant
- Negation
- Absolute

Binary Operation
Classification of Code Elements to Derive Implicit Beliefs

- Program
 - Data
 - Constant
 - Primitive Type
 - Array Type
 - Reference Type
 - Computation
 - Unary Operation
 - Binary Operation
 - Control
 - Normal Flow
 - Exception Flow
 - Structured Control Flow
 - Short Circuit Evaluation
 - Switch Case
 - Count-controlled Loop
 - Condition-controlled Loop
 - Collection/Array-controlled Loop
 - Non-local Control Flow

- Constant Propagation
 - Negation
 - Absolute
Implemented Code Elements

1. Object Instance Creation
2. Null Dereference
3. Type Comparison
4. Count Controlled Loop
5. Short Circuit Evaluation
6. Local Exception
Evaluation

RQ1: What is the accuracy and relative improvement over usage-based mining approach?

RQ2: What is the impact of data size on accuracy?

RQ3: How much does each kind of implicit belief (derived from code elements) participate in relative improvement?

RQ4: How much does context sensitivity render the base usage-based approach?
Data Collection

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>14,785</td>
</tr>
<tr>
<td>Total Source Files</td>
<td>1,938,865</td>
</tr>
<tr>
<td>Total Classes</td>
<td>2,442,288</td>
</tr>
<tr>
<td>Total Methods</td>
<td>17,378,637</td>
</tr>
<tr>
<td>Total SLOCs</td>
<td>352,312,696</td>
</tr>
<tr>
<td>Total Method Calls</td>
<td>69,374,374</td>
</tr>
</tbody>
</table>
Data Collection

<table>
<thead>
<tr>
<th>Library</th>
<th>Calls</th>
<th>Preconditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>org.jfree.chart (CHART)</td>
<td>35,033</td>
<td>169</td>
</tr>
<tr>
<td>org.jfree.data (DATA)</td>
<td>16,671</td>
<td>125</td>
</tr>
<tr>
<td>org.apache.commons.math (MATH)</td>
<td>34,010</td>
<td>20</td>
</tr>
<tr>
<td>javax.swing (SWING)</td>
<td>479,373</td>
<td>20</td>
</tr>
<tr>
<td>org.eclipse.swt.widget (SWT)</td>
<td>328,174</td>
<td>56</td>
</tr>
<tr>
<td>weka.core (WEKA)</td>
<td>44,047</td>
<td>28</td>
</tr>
<tr>
<td>javax.xml (XML)</td>
<td>274,816</td>
<td>48</td>
</tr>
</tbody>
</table>
Evaluation Metrics

Precision: \(\frac{\text{No. of True Positive Conditions}}{\text{No. of Total Mined Preconditions}} \)

Recall: \(\frac{\text{No. of True Positive Preconditions}}{\text{No. of Expected Preconditions}} \)

F-score: \(\frac{(2 \times \text{Precision} \times \text{Recall})}{(\text{Precision} + \text{Recall})} \)
RQ1: Accuracy

% Accuracy of our approach using implicit beliefs on 7 libraries.

(a) Absolute precision

(b) Absolute recall.
RQ1: Accuracy

(a) Absolute precision
% Accuracy of our approach using implicit beliefs on 7 libraries.

(b) Absolute recall.

X-axis: Library
Y-axis: % precision/recall
RQ1: Accuracy

(a) Absolute precision
% Accuracy of our approach using implicit beliefs on 7 libraries.

(b) Absolute recall.
RQ1: Accuracy

(a) Absolute precision
% Accuracy of our approach using implicit beliefs on 7 libraries.

(b) Absolute recall.

- Overall, the precision and recall of our approach are high.
RQ1: Relative Improvement

(a) Relative precision

% Relative accuracy improvement of our approach using implicit beliefs on 7 libraries.

(b) Relative recall.
RQ1: Relative Improvement

(a) Relative precision
% Relative accuracy improvement of our approach using implicit beliefs on 7 libraries.

(b) Relative recall.

X-axis: Library
Y-axis: % relative improvement
RQ1: Relative Improvement

% Relative accuracy improvement of our approach using implicit beliefs on 7 libraries.

- Accuracy is improved on all libraries and overall by 32% in precision and 78% in recall.
RQ2: Impact of Data Size on Accuracy

Swing Library
RQ2: Impact of Data Size on Accuracy

X-axis: progressive data size (blue bar: base, red bar: combined)
Y-axis: % gain in F-score
RQ2: Impact of Data Size on Accuracy

Swing Library

- 10% for Full/512
- 39% for Full/2
RQ2: Impact of Data Size on Accuracy

Swing Library

F-score base F-score combined

<table>
<thead>
<tr>
<th>Data Size</th>
<th>F-score base</th>
<th>F-score combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full/512</td>
<td>10%</td>
<td>26%</td>
</tr>
<tr>
<td>Full/256</td>
<td>10%</td>
<td>26%</td>
</tr>
<tr>
<td>Full/128</td>
<td>10%</td>
<td>26%</td>
</tr>
<tr>
<td>Full/64</td>
<td>20%</td>
<td>39%</td>
</tr>
<tr>
<td>Full/32</td>
<td>30%</td>
<td>51%</td>
</tr>
<tr>
<td>Full/16</td>
<td>40%</td>
<td>61%</td>
</tr>
<tr>
<td>Full/8</td>
<td>50%</td>
<td>61%</td>
</tr>
<tr>
<td>Full/4</td>
<td>50%</td>
<td>61%</td>
</tr>
<tr>
<td>Full/2</td>
<td>50%</td>
<td>61%</td>
</tr>
<tr>
<td>Full</td>
<td>50%</td>
<td>61%</td>
</tr>
</tbody>
</table>
RQ2: Impact of Data Size on Accuracy

- Impact of data size is non-linear.
- With progressive data, F-score saturates after a certain point.
RQ2: Impact of Data Size on Relative Improvement

% Mining relative improvement with progressive data size (Swing).
RQ2: Impact of Data Size on Relative Improvement

% Mining relative improvement with progressive data size (Swing).

X-axis: progressive data size
Y-axis: % relative improvement
RQ2: Impact of Data Size on Relative Improvement

• When the data size starts increasing, much more implicit beliefs are derived.
• After certain data’s size, adding more data, the additional implicit beliefs did not add much more knowledge.
RQ3: How much does Each Code Element Participate in Relative Improvement?

• Two trends are observed:

 – Precision and recall increase for each library.

 – Recall increases for all libraries, precision decreases for few libraries.
RQ3: How much does Count Controlled Loop (CCL) Participate in Relative Improvement?

(a) Relative improvement in precision.
(b) Relative improvement in recall.

% Relative Improvement in Accuracy of Count Controlled Loop (CCL).

- Infer loop invariant preconditions and increases the recall.
- Achieves improvement in terms of precision because the approach only mines true positive conditions.
RQ3: How much does Object Instance Creation (OIC) Participate in Relative Improvement?

(a) Relative improvement in precision.
(b) Relative improvement in recall.

% Relative Improvement in Accuracy of Object Instance Creation (OIC).

- The addition of more true positive preconditions gives better recall.
- In the cases of the libraries DATA and SWING, we see a decrease in precision because of mining stronger conditions related to some APIs.
RQ4: Context Sensitivity Rendering to Usage-Based Approach

% Comparison of 1-Level Control Flow Analysis (1-CFA), Beliefs with respect to baseline approach in terms of precision and recall for 7 different libraries of interest.

- Both types of components further increases the accuracy.
- The preconditions mined by these two different types of components incorporate some overlapping preconditions.
Conclusion

The notion of implicit beliefs and their usage for precondition mining.

Exploit Implicit Belief to Infer Specifications.

Samantha S. Khairunnesa, sammy@iastate.edu
Tien N. Nguyen, tien.n.nguyen@utdallas.edu

Hoan A. Nguyen, hoan@iastate.edu
Hridesh Rajan, hridesh@iastate.edu

Supported in part by the NSF grants CCF-15-18897, CNS-15-13263, Grant No. CCF-17-23215, Grant No. CCF-17-23432, and Grant No. CNS-17-23198.
Conclusion

The notion of implicit beliefs and their usage for precondition mining.

A catalog of 35 code elements in total that can be used to derive implicit beliefs.

Exploit Implicit Belief to Infer Specifications.

Samantha S. Khairunnesa, sammy@iastate.edu
Tien N. Nguyen, tien.n.nguyen@utdallas.edu
Hoan A. Nguyen, hoan@iastate.edu
Hridesh Rajan, hridesh@iastate.edu

Supported in part by the NSF grants CCF-15-18897, CNS-15-13263, Grant No. CCF-17-23215, Grant No. CCF-17-23432, and Grant No. CNS-17-23198.
Conclusion

The notion of implicit beliefs and their usage for precondition mining.

A catalog of 35 code elements in total that can be used to derive implicit beliefs.

Relative Improvement in Precision: 32%
Relative Improvement in Recall: 78%

Exploit Implicit Belief to Infer Specifications.

Samantha S. Khairunnesa, sammy@iastate.edu
Tien N. Nguyen, tien.n.nguyen@utdallas.edu
Hoan A. Nguyen, hoan@iastate.edu
Hridesh Rajan, hridesh@iastate.edu

Supported in part by the NSF grants CCF-15-18897, CNS-15-13263, Grant No. CCF-17-23215, Grant No. CCF-17-23432, and Grant No. CNS-17-23198.