

Failure Assessment

Robyn Lutz, Jet Propulsion Laboratory/Caltech and Iowa State University

Allen Nikora, Jet Propulsion Laboratory/Caltech

Abstract

Failure assessment encompasses the identification and characterization both of potential
failure mechanisms in systems under development and of actual failure occurrences in
operational systems. This paper presents several of the most widely used and useful
techniques for failure assessment across the system lifecycle with an emphasis on the role
of software. For each technique the paper describes its purpose and background,
summarizes the process of performing the technique, and evaluates the technique’s
strengths and limitations. The discussion provides lessons learned from practice,
examples from spacecraft applications, and pointers to additional work in the field. The
paper describes some of the tools that are available to help the practitioner select and
implement failure assessment techniques and identifies likely future directions in failure
assessment.

Introduction

A failure is the inability of a system or component to perform its required functions
within specified performance requirements [IEEE90]. Failure assessment encompasses
the identification and characterization both of potential failure mechanisms in systems
under development and of actual failure occurrences in operational systems. Three
questions to which developers and users want accurate, precise answers are "How can the
system fail?", "What bad things will happen if the failure occurs?", and "How many
failures will the system experience?" In this paper we discuss several of the most
promising techniques that have been devised to answer these questions, such as Fault
Tree Analysis (FTA) and Failure Modes, Effects and Criticality Analysis (FMECA).

The paper emphasizes the role of software in the system and of software failure in system
failure assessment. Software is currently a major challenge to the safety and reliability of
space and aerospace systems. Many accidents and near-misses have been caused by
software failures. For software, the techniques described here include Software Fault
Tree Analysis (SFTA), Software Failure Modes, Effects, and Criticality Analysis
(SFMECA), Bi-Directional Safety Analysis (BDSA), and Software Fault/Failure
Modeling.

SFTA and SFMECA have been successfully used to analyze the flight software for a
number of robotic planetary exploration missions, including Galileo, Cassini, and Deep
Space 1. SFTA has also been shown to be effective in analyzing the security aspects of

software systems by modeling intrusion mechanisms and effects using fault trees
[Helm02]. The Bi-Directional Safety Analysis (BDSA) method combines a forward
search (similar to SFMECA) from potential failure modes to their effects, with a
backward search (similar to SFTA) from feasible hazards to the contributing causes of
each hazard. BDSA offers an efficient way to identify latent failures. Recent work has
extended BDSA to product- line applications such as flight- instrumentation displays and
developed tool support for the reuse of the failure-analysis artifacts within a product line
[Dehl04, Dehl06, Feng05]. BDSA has also been streamlined to support those projects
having tight cost and/or schedule constraints for their failure analysis efforts [Lutz99].

A substantial amount of research has been devoted to estimating the number of failures
that a software system will experience during test and operations, as well as the number
of faults that have been inserted into that system during its development. Nikora, for
example, has found that the amount of structural change to a system during its develop-
ment is strongly related to the number of faults inserted into it. Using techniques
requiring no additional effort on the part of the development organization, the required
measurements of structural evolution can be easily obtained from a development effort's
configuration management system and readily transformed into an estimate of fault
content. So far, structure-fault relationships have been identified for source code; current
work seeks to examine artifacts available earlier in the lifecycle to determine if similar
relationships between structure and fault content can be found. In particular, relation-
ships between requirements change requests and the number of faults inserted into the
implemented system would provide a significant improvement in our ability to control
software quality during the early deve lopment phases.

FMEA

Purpose: Failure Modes and Effects Analysis (FMEA) is an engineering process that
investigates the potential effects of postulated failures on a system and its environment.
When the criticality of the effects is also considered, the technique is called a Failure
Modes, Effects and Criticality Analysis (FMECA). FMEA and FMECA are widely used
to discover design defects during development of a system and to troubleshoot problems
during system operation.

Background: FMEA developed in the late 50s and 60s to provide a systematic form of
failure analysis that could improve reliability. Its use has been embraced by a broad
range of industries including device designers, aerospace, automotive, manufacturing and
chemical processing. The earliest organizations to set standards on FMEA were NASA
in 1971 and the U.S. military in 1974. See [Lutz99a] for more information.

Process: The input to FMEA is a design description of the system or component. After
determining the scope of the analysis (what components and what level of detail are
appropriate), the analyst identifies the failure modes of each block. Depending on the
scope of the analysis and type of system, these failure modes may include mechanical,
electronic, electrical, software, environmental and/or operational aspects of the system.
Often the potential failure modes are drawn from pre-existing libraries of known failure

modes for each component. These guidewords (e.g., “rupture” or “short-circuit”) provide
a structured approach to the investigation.

After determining the failure modes, the analyst then determines the effect of each
potential failure mode on the component (local effect) and on the system operating in its
environment (global effect). Effects range from effects on the component itself (“leak”)
to effects on the environment (“contamination”).

The FMEA results are recorded in a table with the left-hand columns describ ing the
failure mode and, perhaps, the guideword used to identify it, and the right-hand columns
describing the effects and, perhaps, the criticality rankings of the effects. Some FMEAs
are quantitative and may also have probabilities attached to the occurrence of the failure
modes and of the effects. The rightmost column of the FMEA may contain a mitigation
plan or recommendation for how to avoid/prevent/recover from the failure mode. The
output of the FMEA is a set of recommended corrective actions for design improvement
and the FMEA tables.

Discussion: FMEA is a bottom-up, static-analysis technique with the effect of failure on
the individual component first being identified. FMEA is often performed hierarchically
with the effects at the lower level typically serving as the failure modes at the next higher
level. FMEA is also a forward-analysis technique since it proceeds forward in time from
the occurrence of failures to their subsequent effects. The quality of the FMEA depends
on the analyst’s level of knowledge of the system being studied. Tools and automation
are discussed below. A limitation of FMEA is that it usually considers only one failure
at a time so may not be suitable for investigation of multiple failures or of common-cause
failures, especially those involving subtle timing issues.

SFMEA

Purpose: Software Failure Modes and Effects Analysis (SFMEA) is a software-
engineering process that investigates the potential effects of postulated software failures
on a system and its environment. When the criticality of the effects is also considered, the
technique is called a Software Failure Modes, Effects and Criticality Analysis
(SFMECA). SFMEA and SFMECA are primarily used to discover software design
defects during software development.

Background: SFMEA is an extension of FMEA developed in the 70s to provide a
systematic form of failure analysis that could improve reliability. It has been used
internationally in the development of software for space systems. There are several
guidebooks that describe SFMEA but no publicly available standards. See [Herm99,
Lutz97, NASA04, Reif79] for more information.

Process: SFMEA is a structured, table-based process of discovering and documenting
the ways in which a software component can fail and the consequences of those failures.
The input to a SFMEA is a specification of the design or detailed requirements of the

software. After determining the scope of the analysis (what software components and
what level of detail are appropriate), the analyst identifies the failure modes of each
block. The SFMEA process is guided by a set of standardized failure modes (“wrong
timing of data”, “abnormal process termination”). Note that SFMEA is most effective
when the failure modes include anomalous software data and events, i.e., deviations from
expected software behavior, rather than just faults.

The SFMEA process traces the propagation of anomalies from causes (failure modes) to
local (subsystem or component) effects to global (system or environmental) effects. An
example of a failure mode is “heater turned on too early”. An example of an effect is
“battery allocation exceeded”. The left-hand columns describe the failure modes, possibly
in terms of guidewords [Lutz97]; the right-hand columns describe the local and system
effects. In a SFMECA a criticality rating (e.g., high, medium or low) is assigned to each
failure mode based upon its likelihood of occurrence and the severity of its effects.

We recommend the construction of two types of SFMEA tables in order to consider both
communication failures and process failures, a Data Table and an Events Table. The Data
Table analyzes failures in software interfaces and data dependencies. This table
evaluates both the effect of receiving bad or unexpected input data on software behavior
and the effect of producing bad or unexpected output data on the behavior of the
components that receive or use this data. Table 1 shows an excerpt from a SFMEA data
table.

Data Item Failure Mode Failure Description System Effect Criticality

Heater ON Timing wrong Heater ON too
early

Batteries can't support Low

Heater ON Timing wrong Heater ON too late Experiment delayed Low

Heater OFF Timing wrong Heater OFF too
early

Science data lost Low

Heater OFF Timing wrong Heater OFF too
late

Energy allocation
exceeded

Low

Table 1. Excerpt from a SFMEA

The Events Table analyzes failures in the functional execution of the software program.
This table describes both the local effect and global effect of performing an incorrect
event (“lock door”). What constitutes an event depends on the scope of the analysis and
the level of detail of the available documentation. An event is usually considered to be a
single action (“perform calculation”, “sample sensor value”, “slew antenna to new
position”). See [Lutz97, NASA04] for a fuller description of the process. The rightmost
column of the SFMEA often describes software change requests or other corrective
actions (e.g., operational flight rules) to mitigate failure modes. The output of the
SFMEA is the recommendations for design improvement and the SFMEA Data and
Event Tables.

Discussion: SFMEA is a bottom-up, forward-analysis technique. SFMEA describes the
effects of the hypothesized failure mode as they propagate through the software and the
system. As with FMEA, a limitation is that multiple, concurrent failures and common-

cause failures may escape detection. Integration of the SFMEA with the backward-
analysis technique of Software Fault Tree Analysis has shown some success in overcom-
ing this limitation. That integration is discussed below.

FTA

Purpose: Fault Tree Analysis is an engineering activity that investigates the potential
causes of a fault or hazard. FTA is widely used to discover design defects during the
development of a system and to investigate the causes of accidents or problems that occur
during system operation.

Background: FTA was developed in the early 1960’s at Bell Telephone Laboratories to
analyze the Minuteman Launch Control System. It is probably the most widely used
analysis technique in industry for reasoning about safety and reliability. It has been used
for both quantitative analysis and qualitative analysis. See [Leve95, MIL80, Rah90,
Stor96] for additional information.

Process: The input to FTA is a hazard, failure or accident, and a design description of
the system. The analyst works backward from the root-node hazard, using Boolean logic
to describe the combination of events or conditions that caused each node. Each
resulting node is similarly decomposed until events determined to be basic by the analyst
(i.e., not meriting further decomposition) are reached at the leaf nodes.

In each fault tree its minimum cut sets are the smallest sets of basic events that cause the
root node to occur. These describe all the different ways in which the root-node hazard
can happen. The analyst then focuses attention on how best to remove the vulnerabilities
in the design that the FTA has identified. By removing paths to the root node, the risk of
the hazard occurring is reduced. The output of the FTA is thus the fault trees it produces
and the set of recommendations for corrective actions to be taken to preclude the
occurrence of the hazard.

Discussion: FTA is a top-down technique. Fault trees are sometimes constructed with
each successive level refining the understanding of the root event. Other times fault trees
are constructed with backward analysis, where each successive level works backward in
time. A limitation of this approach is that a fault tree must be created for every top- level
hazard that is considered. Another limitation is that the root node must be a known
(rather than a latent) hazard. Because basic fault trees do not capture timing information,
there have been several extensions to incorporate time [Hans98].

SFTA

Purpose: Software Fault Tree Analysis (SFTA) is a static-analysis process that
investigates the potential software-related causes of a fault or hazard. SFTA is primarily
used in software development to discover software defects. It is most efficiently applied
when detailed requirements or design documentation exist. It has also been used for
verifying software code [Leve95].

Background: SFTA was developed in the 1980’s as an application of fault trees to
software systems. It has proven to be an intuitively appealing way to structure the
analysis of whether an undesirable event could occur and, if so, what events would lead
to the occurrence of the undesirable event.

Process: SFTA is a structured, tree-based process of discovering and documenting the
contributing causes to the occurrence of an undesirable event, represented in the root
node. The input to the SFTA is a root-node hazard or event of concern and a specifica-
tion of the design or detailed requirements of the software. Alternatively, SFTA can be
performed on the software code.

The SFTA process systematically traces the events or conditions that could lead to the
undesirable root node, documenting them in Boolean logic. Figure 1 shows a small
example of a SFTA.

Figure 1. SFTA

There are two basic gates that are used in SFTA: AND gates and OR gates. Together
with the NOT notation, these form the core of the SFTA representation. Different tools
and approaches have different additional gates, such as INHIBIT, XOR, and
PRIORITY_AND (to describe events that must occur in a specified order).

Discussion: SFTA is a top-down technique. It uses a backward search to find the
possible causes of the problem. A traditional SFTA evaluates only the possibility of
occurrence, not the likelihood. However, developers have often found it useful to
annotate the nodes with quantitative information. One such application is in security to
detect how intrusions can occur [Helm02]. The SFTA there is sometimes called an
“attack tree” because the root node describes a security attack on the system. As with
FTA, a limitation of SFTA is that the root node can only describe a known failure. Also,

as noted below in the Tools section, while these methods appear to be scalable for
software, they are labor- intensive and thus costly. A small study, reported below,
provided some guidelines for how to limit the scope of the application to the most-critical
components when project resources for failure analysis are limited.

BDSA

Purpose: Bi-Directional Safety Analysis (BDSA) integrates the forward analysis
performed in SFMEA and the backward analysis performed in SFTA to provide a more
complete static analysis of the design. The purpose of BDSA is to show that the software
design is free of critical flaws that can contribute to hazards. It is a systematic technique
for identifying what can go wrong with each software component in the system (its
failure modes), what effects each failure mode can have as it propagates through the
system, and what events or features enable or contribute to the possibility of that failure
mode in the first place. The combination of the forward and backward search has proven
effective in discovering latent safety requirements [Lutz97].

 Background: Combining forward analysis and backward analysis grew out of the
HAZOP approach used in the chemical industry to provide guideword-driven analysis of
the effects and causes of deviations from the specified process [Leve95]. Beginning in the
1990’s this approach was applied to software. Whereas we perform the forward search
first (to identify failures with high-risk effects) and then the backward search (for the
causes of these failures), some users first perform a backward search on known failures
and then a forward search to identify the effects.

Process: BDSA initially checks the design to determine whether the effects of abnormal
input values and unexpected software events can contribute to unsafe system behavior.
The forward analysis is similar to a SFMECA in that it moves from failure modes to
effects. Once the failure modes with unacceptable consequences have been identified,
the backward analysis is performed to check whether the failure mode could occur in the
given system. This analysis investigates the feasibility of the failure and the design
vulnerabilities that together can lead to the failure. The second part of the BDSA is
similar to a SFTA.

Discussion: The integration of the forward search entailed in an SFMEA with the
backward search of a SFTA enhances the effectiveness of the failure assessment. In
previous work we have used BDSA to find previously unidentified software failure
modes, multiple, coincident anomalies, and hidden dependencies among software
processes. For example, this approach was applied to twenty-four fault-protection
software modules on two spacecraft systems, Cassini and Galileo. The goal was to
reduce the number of failures, minimize the effect of any remaining failure modes, and
search for unanticipated failure modes. Twenty-five issues requiring changes to the
requirements specification were found in the first seven Cassini modules analyzed. Four
of these findings were significant, all involving missing or inadequate interface
requirements [Lutz97].

The SFMEA used forward searching to identify cases in which failed or anomalous data
or behavior could have unacceptable effects. The SFTA then applied backward search to
investigate circumstances that could lead to those cases. For example, the forward
analysis found a failure mode in which outdated sensor data had the effect of preventing
the software from commanding an essential reconfiguration. The backward analysis then
found that this failure mode could occur when a sensor failed with a healthy value, since
the obsolete data from a failed sensor continued to be sent to the software for processing.
The demonstration of this latent failure mode (obsolete data preventing recovery action)
allowed the software requirements to be changed to eliminate this potential fa ilure.

More recently BDSA has been extended to product lines [Dehl04, Dehl06, Feng05]. A
product line is a set of systems that share many features as well as a mission. For
example, flight- instrumentation displays have been developed as a product line. Product
lines exploit reuse potential to build new systems with lower cost and, it is hoped, higher
reliability. The approach is to reuse portions of the safety analysis that were performed
when the product line was initially specified to assist in the safety analysis of new
products in the product line as they are added. If we can exploit the similarities among
the systems (and, thus, among their safety analyses) without discounting the safety-
related effects of the variations among the individual systems, we may be able to improve
safety analysis of the product line while reducing the associated costs. However, the
example of the Ariane rocket product line, where inadequate consideration of the safety-
related variations from the previous Ariane 4 doomed the Ariane 5 mission, continues to
be a sobering example of the potential risks involved in the reuse of safety analysis and of
how rigorously reuse in safety-critical product lines must be analyzed.

Failure assessment techniques often emphasize full-scale, one-size-fits-all analysis of a
system. For smaller projects, where cost, schedule, or personnel constraints may restrict
the scope of the analysis, findings from Lutz and Shaw’s application of BDSA to two
space instruments (the Mars Microprobe on the Mars Polar Lander and the Earth Orbiting
System’s Microwave Limb Sounder) offer some guidelines [Lutz99]. The main lessons
learned from this experience were that the use of these analysis techniques should be:

• Flexible, in order to leverage already existing project analyses and documentation
• Tailored to specific project concerns, by letting the project choose the targets and

scope of analysis (e.g., fault-protection or safety-critical components)
• Risk-driven, in that prior analysis results guide the application
• Capable of using “Zoom-in/Zoom-out” focusing, in order to selectively do a

more detailed analysis of issues of concern and only a high- level analysis of bet-
ter-understood and well-verified modules

• Traceable, so that relationships between higher- level and lower- level failure
assessments, and between software, hardware and system failure assessments, can
be maintained as the system evolves.

Software Reliability Engineering

Purpose: Software reliability is defined as the probability of failure-free software
operation for a specified period time in a specified environment [ANSI91]. Software
Reliability Engineering is an engineering discipline that 1) seeks to improve the
reliability of fielded software systems and 2) is used to measure, estimate, and forecast
the reliability of software systems during various stages of development. It is this second
aspect of software reliability engineering we discuss in the following paragraphs.

Background: Software reliability models that can be used to estimate and forecast the
reliability of software systems during test and operations were initially developed in the
early 1970s [Mor71, Shoo72]. Since that time, dozens of models have appeared in the
literature – the most widely used are described in [Lyu96]. These statistical models use a
software system’s observed failure history (i.e., time since the last failure or number of
failures observed in an interval of given length) to estimate the current reliability and
forecast the reliability during future testing or operations. Detailed information on the
use of these models is given in [AIAA93], [Lyu96], [Musa87], and [Musa04]. More
recently, researchers have developed software defect models that relate measurable
structural characteristics of software systems and/or deve lopment process to the number
of defects inserted during development [Mun91], [Mun02], [Nik03]. [Nik04], [Neu92].
The techniques described in [Mun91] use measurable attributes of source code structure;
the defect models developed in [Mun02], [Nik03], and [Nik04] use measurements of the
source code’s structural evolution during its development. The models described in
[Neu92] use measurable attributes of software artifacts and the development process to
provide estimates of failure intensity and fault density. There has also been some recent
work in relating measurable characteristics of requirements change requests to defect
content [Schn01].

Process: After unit testing, software reliability models can be used to better manage
testing resources. To use software reliability models during test, the failure history of the
system under test must be recorded – failure history can be in the form of 1) elapsed time
since the last failure, or 2) number of failures in a test interval of given length (“interval
data”). A software reliability model applied to this type of data will produce estimates
and forecasts of reliability as well as reliability-related quantities (e.g., time to next
failure, expected number of failures in the next N intervals). If a testable reliability
requirement has been established, a software reliability model can be used to answer the
following questions:

1. Has the software achieved the required reliability (to a specified level of confi-
dence)?

2. How much more testing effort will be required to achieve the required reliability?
This result can be readily transformed into estimates of the number of testing re-
sources (e.g., personnel, test installations, funding) that will be required.

3. What will the impact on the system’s reliability be if only a certain fraction of the
required testing resources will be available?

Even if testable reliability requirements have not been established, it is possible to use
these models to help manage the testing effort. If the software under test is experiencing

reliability growth (as determined by trend tests such as the Laplace test [Cox66]), then
reliability models can be applied to forecast the elapsed testing time until the rate at
which new failures are observed is sufficiently low to proceed with the next testing
phase.

It is not currently possible to determine a priori which software reliability model will be
most applicable to a software development effort [Abdel86, Nik95]. However, a number
of criteria have been developed that can help practitioners identify the most appropriate
software reliability model at any point during the testing phase. These are:

• Prequential likelihood ratio – A “prequential likelihood” (PL) value is com-
puted by inserting the observed times between successive failures (or number of
failures per test interval) and the estimated parameter values into a likelihood
function of the form originally used to estimate the model parameters. Given two
models A and B and a prior belief that either model is equally appropriate, the
prequential likelihood ratio defines how much more likely it is that model A will
produce more accurate estimates than model B. As the ratio PLA/PLB approaches
infinity, model A is discarded in favor of model B.

• Model Bias – this criterion quantifies the extent to which a model consistently
makes predictions of time-to-next- failure that are larger than those actually ob-
served (“optimistic predictions”) or smaller than those actually observed (“pessi-
mistic predictions”). For interval data, optimistic predictions are those forecasting
a smaller number of failures in future test intervals than the number actually ob-
served; pessimistic predictions forecast a larger number of failures than the num-
ber actually observed. The extent to which a model is biased is computed by
comparing an ideal distribution of times-to-next- failure (or number of failures per
interval) to the actual observations using the Kolmogorov-Smirnov test [Mood74]
– the smaller the test statistic, the less bias exhibited by the model.

• Model Bias Trend – A model’s bias may change during a testing phase – during
the early part of software integration testing, for instance, a model may make op-
timistic predictions, while later on it may consistently make pessimistic predic-
tions. A transformation of the quantities used to compute model bias is used to
determine the extent to which a model’s bias changes over time. As with model
bias, the extent of bias trend is computed by comparing an ideal distribution to the
actual observations using the Kolmogorov-Smirnov test. As with model bias, the
smaller the test statistic, the smaller the extent to which a model’s bias shifts over
time.

Detailed descriptions of these criteria are provided in [Abdel86]. Because it is cheap in
terms of human and computer resources (e.g., less than 10 seconds for a data set of over
1000 failures) to apply a software reliability model to a set of failure data from a real
software development effort, we recommend that multiple software reliability models be
applied to a set of failure data, and that model predictions be updated at regular intervals
(e.g., weekly), since model preferences can change rapidly during test. The most
appropriate model should be selected as described in [Nik95]:

• Eliminate all models whose goodness of fit falls below a specified threshold (e.g.,
models that don’t fit the data at a 5% or better significance level).

• Rank the remaining models according to their prequential likelihood values.
Models with higher prequential likelihood values are more likely to yield accurate
predictions and will be ranked higher.

• In the event of a tie, rank the models according to model bias to break the tie.
Models with lower values of model bias will be ranked higher.

• In the event of a tie, rank the models according to model bias trend to break the
tie. Models with lower values of model bias trend will be ranked higher.

These types of software reliability models have been deployed in commercial and
government software development efforts. For example, the NASA Space Transportation
System Primary Avionics System Software has successfully used software reliability
models to help decide whether an Operational Increment is ready for release [Kel97,
Schn92]. One of the best-known uses of these techniques in commercial organizations is
their use at AT&T to manage the reliability of telephone switching systems [Musa87].
More recently, they have been used in the development of the FAA’s Wide Angle
Augmentation System [Keene01].

Since these models require a large enough sample of failure data to order to produce
parameters estimates that converge, it is not feasible to use them during unit test. Even if
it were possible to model the reliabilities of individual units, it would be necessary to
have detailed knowledge of how the units interact in order to produce a component or
system-level reliability from the estimates of unit reliability. These factors limit the
application of software reliability models to larger software components (e.g., CSCIs).

Most of these models assume that the software under test is relatively mature (i.e., that
most change is due to fault repair, and there is little functionality being added, removed,
or changed) [Lyu96]. This means that these models may not be usable during early
stages of testing, when functionality implemented in the system under test may be
undergoing significant changes. A number of models are able to accommodate some
degree of change to the software under test; one heuristic indicates that if less than 20%
of the software is being changed, it may still be possible to apply software reliability
models [Musa87].

Because all failure-based software reliability models assume that the software under test
will become more reliable as testing progresses, they should not be applied to software
that is not experiencing reliability growth during test. Although it is possible that the
parameter estimates will converge, it is likely in this case that model results will not be a
good fit to the data, and will be much more likely to misrepresent the software’s
estimated and predicted reliability. Software reliability models should only be applied to
a software system’s failure history if a trend test, such as the Laplace test, indicates that
the reliability of the software is increasing during test.

During earlier development phases, defect models that estimate the software’s defect
content based on its structural characteristics can be used to identify those components
having a higher fault burden, and hence posing a higher reliability risk than others.
Recent work at NASA’s Jet Propulsion Laboratory and the University of Idaho have led

to the development of techniques for estimating a software system’s absolute or
proportional fault burden at the level of individual functions and methods using
measurements of the source code’s structural evolution during its development. An
initial study, based on measurements of the CASSINI mission flight software’s structural
evolution, is described in [Nik98]. The results indicated a strong linear relationship
between a fault index computed from the measurements of structural evolution and the
number of faults inserted into the software during its development. This relationship is
shown in Table 2 below.

N Multiple R Squared Multiple R Standard Error of Estimate
35 .848 .719 2.087

Table 2. CASSINI Defect Model Quality

This initial study had two significant limitations, however:

• The study was relatively small – fewer than 50 observations were used in the
regression analysis relating the number of faults inserted to the amount of struc-
tural change.

• The definition of faults that was used was not quantitative. The ad-hoc taxonomy,
first described in [Nik97], was an attempt to provide an unambiguous set of rules
for identifying and counting faults. The rules were based on the types of changes
made to source code in response to failures reported in the system. Although the
rules provided a way of classifying the faults by type, and attempted to address
faults at the level of individual modules, they were not sufficient to enable repeat-
able and consistent fault counts by different observers to be made. The rules in
and of themselves were unreliable.

A larger study used fault and software structural information available from the Mission
Data System (MDS) [Dvo99], a JPL software technology development effort. A
quantitative definition of what constitutes a software fault was developed, and a set of
tools was implemented to automate the identification and measurement of changes that
had been made in response to reported failures [Mun02, Nik03]. For the MDS, the
configuration management and failure reporting systems were integrated in such a way
that it was possible to unambiguously associate a given set of changes to the source code
with a reported failure for a much larger number of observations than was possible with
CASSINI, thereby increasing the sample size by an order of magnitude over that for
CASSINI. This study also showed a significant relationship between measurements of
source code structural evolution and the number of faults inserted during development
[Nik03]; the findings are summarized in Table 3 and Table 4 below.

Source Sum of
Squares

Df Mean
Square

F Sig.

Regression 10091546 3 3363848 293 p<0.01
Residual 6430656 560 11483
Total 16522203 563
Table 3. MDS Regression ANOVA

N Adjusted R Adjusted R Square Standard Error of Estimate
564 .782 .609 107.160

Table 4. MDS Defect Model Quality

Tools for taking and analyzing the necessary measurements can be inserted into a
development effort (e.g., as part of the configuration management process) without
requiring additional effort on the part of the developers [Nik01]. Developers and
managers can then examine the results to identify those portions of the software having
the greatest defect potential; these results can be used in conjunction with other
information, such as the criticality of a component, to help development organizations
better decide how to allocate scarce defect identification and removal resources.

Discussion: Software reliability estimation and forecasting can be either black-box or
white-box activities. “Traditional” software reliability models (i.e., those that operate on
failure history data obtained during test) do not rely on any measurable characteristics of
the software system’s structure; they cannot be used to predict the effect of any design
and/or development process changes on the software system’s reliability. Defect models
that can be applied during earlier portions of the development life cycle, on the other
hand, are white-box activities, since they rely on measurable characteristics of a software
system’s structure and/or development process to estimate the software’s defect content.
If proposed changes to the software system’s structure can be measured, these types of
models may be used to estimate the effect of the changes on the software’s defect
content. Unlike traditional models, however, these models cannot be used to directly
estimate or predict reliability and reliability-related quantities such as failure rates or the
expected number of defects in future test intervals. However, since they can be applied
earlier than traditional software reliability models, they can be used to identify defect-
prone software components earlier in the development cycle, potentially reducing defect
ident ification and removal costs during later phases.

Tools and Automation

Automated and partially-automated toolsets can reduce the cost and labor of performing
fault analysis. There are a number of commercial and government toolsets that assist
with FMEA and FTA, such as Saphire [Saph], Relex [Relx], and Galileo [Sul99]. We do
not endorse any specific products here. Such toolsets often reduce repetitive data entry,
especially during updates, provide links to libraries of component models, integrate with
CAD (Computer-Aided Design) tools, calculate failure rates and other statistics, and
support report-writing. These same toolsets also support SFMEA and SFTA. However,
since the quantitative analysis of software is still an open problem, the automation is
primarily used for editing, configuration control, and reuse of components (e.g., of
recurring sub-trees). Thus, some analysts will prefer the use of more familiar word-
processing or drawing programs when performing SFMEA of SFTA.

A number of software reliability modeling tools implementing traditional software
models have been developed over the past 10 years. The most popular of these tools are
Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS)

[SMERFS], and Computer-Aided Software Reliability Estimation (CASRE) [CASRE].
Both of these tools implement a number of the more popular models, allowing practitio-
ners to apply traditional models according to the process discussion in the preceding
discussion on software reliability engineering. Practitioners can use either of the two
types of failure history described in the section on software reliability engineering, as
each of the tools implements both types of models. In addition to displaying estimates
and forecasts of software reliability and reliability-related quantities in graphical and
tabular form, the tools allow user to determine model applicability using goodness of fit
tests (Kolmogorov-Smirnov for times between failures data, and Chi-Square for interval
data) as well as the analyses described in [Abdel86].

Future Directions

Advances in failure assessment continue to be made. Three directions are of particular
interest to ISHEM.

• Automated generation of FTA/SFTA and FMECA/SFMECA. Progress in model-
based development is enabling automatic production of fault trees and other fail-
ure analysis artifacts from state-based models. Results to date are preliminary.
However, we expect the quality and scalability of these automated techniques to
improve rapidly and hope to see them ready to move into industry in the next five
to ten years.

• Product- line fault trees. As industry and NASA move toward development of
product lines of similar systems, interest in product- line approaches to failure as-
sessment has grown. Recent results extend SFTA and SFMECA to product lines
[Dehl04, Dehl06]. Production of these product- line artifacts takes place at the
time of product-line specification or design analysis. Subsequently, as each new
system in the product line is developed, the analyst, with automated tool support,
prunes the product- line software fault tree to consider only those nodes relevant to
that particular system. In this way, the failure-analysis products can be effi-
ciently reused across the systems in a product line. Similarly, in the future, li-
braries of SFTA subtrees and SFMECA for reusable software components will be
assembled and made available to the developer, much as libraries for hardware
components are today.

• In software reliability engineering, more work is being done in estimating a
software system’s defect content earlier in the life cycle. More researchers are at-
tempting to identify relationships between measurable attributes of specifications
and the defect content of the implemented system. A substantial amount of work
has also been done in developing software reliability models using architectural
information about a system [Gos01], [Gos01a], [Gokh98]. These models can help
developers identify architectural components whose correct operation is the most
critical to the overall reliability of the system; experiments reported in [Gos05]
indicate that a relatively small number of components have the greatest effect on
the overall reliability. Recent work also indicates that relatively non-intrusive in-
strumentation can be developed that will allow practitioners to assess the risk of
exposure to residual faults in near-real time [Nik03a]. If this type of instrumenta-

tion can be developed, the resulting risk assessment might be used as the basis of
adaptive software fault tolerance strategies.

Conclusion

We have surveyed several widely used techniques for systems and software failure
assessment in this paper. The focus has been on ways to identify potential failures, to
characterize the system consequences of the failures, and to assess the contributing
causes in order to remove or control them. We have also surveyed techniques for
estimating and forecasting the reliability of software systems during test, as well as
techniques for estimating software defect content during earlier development phases (e.g.,
implementation). We have briefly described how these techniques may be applied
during a software development effort, and have listed some of the practical constraints on
their use. Finally, we have identified current research trends in software safety and
software reliability engineering that may yield improved failure assessment methods.

Acknowledgments

The research described in this paper was partially carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. It was funded in part by NASA’s Office of
Safety and Mission Assurance Software Assurance Research Program. The first author’s
research is supported in part by National Science Foundation Grants 0204139 and
0205588.

References

[Abdel86] A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood; “Evaluation of Competing

Software Reliability Predictions,” IEEE Transactions on Software Engi-
neering; vol. SE-12, pp. 950-967; Sep. 1986

[AIAA93] ANSI/AIAA, R-013-1992, “Recommended Practice for Software
Reliability”, American National Standards Institute/American Institute of
Aeronautics and Astronautics, 370 L’Enfant Promenade, SW, Washington,
DC 20024, February 23, 1993

[ANSI91] ANSI/IEEE “Standard Glossary of Software Engineering Terminology”,
STD-729-1991, ANSI/IEEE, 1991

[CASRE] http://www.openchannelfoundation.org/projects/CASRE_3.0

[Cox66] D. R. Cox and P. A.W. Lewis, The Statistical Analysis of a Series of
Events, Methuen, London, 1966

[Dehl04] J. Dehlinger and R. Lutz, “Software Fault Tree Analysis for Product
Lines,” Proc. 8th IEEE International Symposium on High Assurance Sys-
tems Engineering (HASE’04), March 24-26, 2004, Tampa, Florida, pp. 12-
21.

[Dehl06] J. Dehlinger and R. Lutz , “PLFaultCat: A Product-Line Software Fault
Tree Analysis Tool”, with J. Dehlinger, Automated Software Engineering,
to appear.

[Dvo99] D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks, “Software Architecture
Themes In JPL’s Mission Data System”, proceedings of AIAA Space Tech-
nology Conference and Exposition, September 28-30, 1999, Albuquerque,
NM.

[Feng05] Q. Feng and R. Lutz, “Bi-Directional Safety Analysis of Product Lines”,
Journal of Systems and Software, to appear.

[Gokh98] S. Gokhale, M. Lyu, and K. S. Trivedi, “Reliability Simulation of
Component-Based Software Systems”, International Symposium on Soft-
ware Reliability Engineering, Paderborn, Germany, Nov. 1998

[Gos01] K.Goseva-Popstojanova, K.S.Trivedi, “Architecture Based Approach to
Reliability Assessment of Software Systems”, Performance Evaluation,
Vol.45/2-3, June 2001

[Gos01a] K.Goseva-Popstojanova, A.P.Mathur, K.S.Trivedi, “Comparison of
Architecture-Based Software Reliability Models”, Proc. 12th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE 2001),
Hong Kong, Nov. 2001

[Gos05] K.Goseva-Popstojanova, “Performability of Web Based Applications”,
proceedings of the NASA Office of Safety and Mission Assurance Software
Assurance Symposium, Aug. 9-11, 2005.

[Hans98] K. Hansen, A. Ravn, and V. Stavridou, “From Safety Analysis to Software
Requirements”, IEEE Trans. Softw. Eng. 24, 7 (Jul. 1998), 573-584

[Helm02] G. Helmer, J. Wong, M. Slagell, V. Honavar, R. Lutz and L. Miller "A
Software Fault Tree Approach to Requirements Analysis of an Intrusion
Detection System," Requirements Engineering Journal, Vol. 7, Issue 4
(2002), pp. 207-220.

[Herm99] Hermann, Debra S. Software Safety and Reliability. IEEE Computer
Society, 1999.

[IEEE90] IEEE, IEEE Standard Glossary of Software Engineering Terminology, IEEE
Std 610.12-1990.

[Keene01] S. Keene, J. Peterson, M. Yin, “Managing Reliability Development &
Growth in a Widely Distributed, Safety-Critical System, proceedings of the
International Symposium on Software Reliability Engineering – Industry
Track, Nov 27-30, Hong Kong, 2001.

[Kel97] T. Keller, N. Schneidewind, ”Successful Application of Software
Reliability Engineering for the NASA Space Shuttle”, proceedings of the
International Symposium on Software Reliability Engineering – Case Stud-
ies, Nov 2-5, 1997, Albuquerque, NM, pp. 71-82.

[Leve95] N. Leveson, Safeware: System Safety and Computers. Addison-Wesley,
1995.

[Lutz97] R. Lutz and R. Woodhouse "Requirements Analysis Using Forward and
Backward Search,'' Annals of Software Engineering, Vol. 3, Sept, 1997, pp.
459-475.

[Lutz99] R. Lutz and H.-Y. Shaw, “Applying Adaptive Safety Analysis Tech-
niques,” Proc. 10th Int’l Symp on Software Reliability Engineering, 1999.

[Lutz99a] R. Lutz and R. Woodhouse "Failure Modes and Effects Analysis,'' with R.
Woodhouse, in Encyclopedia of Electrical and Electronics Engineering,
ed. J. Webster, John Wiley and Sons Publishers, 1999, Vol. 7, pp. 253-257.

[Lyu96] M. Lyu, ed., Handbook of Software Reliability Engineering, McGraw-Hill,
1996

[MIL80] Military Standard, Procedures for Performing a Failure Mode, Effects and
Criticality Analysis (1980), MIL-STD-1629A.

[Mood74] A. Mood, F. Graybill, D. Boes, Introduction to the Theory of Statistics (3rd
ed), McGraw-Hill, 1974, pp. 508-510

[Mor71] P. Moranda, Z. Jelinski, “Software Reliability Research”, McDonnell-
Douglas Astronautics Co., MDAC Paper WD1808, Nov 1971.

[Mun02] J. Munson, A. Nikora, “Toward a Quantitative Definition of Software
Faults”, Proceedings of the International Symposium on Software Reliabil-
ity Engineering, Nov 12-15, 2002, Annapolis, MD

[Mun91] J. Munson, T. Khoshgoftaar, “The Use of Software Complexity Metrics in
Software Reliability Modeling”, International Symposium on Software Re-
liability Engineering, May 17-18, 1991

[Musa04] J. Musa, Software Reliability Engineering: More Reliable Software Faster
And Cheaper (2nd ed), Authorhouse, 2004

[Musa87] J. Musa., A. Iannino, K. Okumoto, Software Reliability: Measurement,
Prediction, Application; McGraw-Hill, 1987

[NASA04] NASA Software Safety Standard, NASA-STD 8719-13B, July, 2004.

[Neu92] A. Neufelder, Ensuring Software Reliability, Marcel Dekker, 1992

[Nik01] A. Nikora, J. Munson, “A Practical Software Fault Measurement and
Estimation Framework”, proceedings of the Industrial Presentations track
of the 12th International Symposium on Software Reliability Engineering,
Hong Kong, Nov 27-30, 2001

[Nik03] A. Nikora, J. Munson, “Developing Fault Predictors for Evolving Software
Systems”, proceedings of the 9th International Software Metrics Sympo-
sium, Sep 3-5, Sydney, Australia

[Nik03a] A. Nikora, J. Munson, "Understanding the Nature of Software Evolution",
proceedings of the International Conference on Software Maintenance, Sep
22-26, Amsterdam, The Netherlands

[Nik04] A. Nikora, J. Munson, “The Effects of Fault Counting Methods on Fault
Model Quality”, proceedings of the 28th Annual International Computer
Software and Applications Conference (COMPSAC2004), Hong Kong, Sep
28-30, 2004

[Nik95] A. Nikora, M. R. Lyu, “An Experiment in Determining Software
Reliability Model Applicability”, proceedings of the Sixth International
Symposium on Software Reliability Engineering, Toulouse, France, Octo-
ber 24-27, 1995

[Nik97] A. Nikora, J. Munson, “Finding Fault with Faults: A Case Study”, with J.
Munson, proceedings of the Annual Oregon Workshop on Software Met-
rics, Coeur d’Alene, ID, May 11-13, 1997.

[Nik98] A. Nikora, J. Munson, “Determining Fault Insertion Rates for Evolving
Software Systems”, proceedings of the International Symposium on Soft-
ware Reliability Engineering, Paderborn Germany, Nov 4-7, 1998, pp. 306-
315.

 [Rah90] D. Raheja, Assurance Technologies, Principles and Practices McGraw-
Hill, 1990.

[Reif79] D. Reifer, “Software Failure Modes and Effects Analysis”, IEEE Trans on
Reliability, R-28, 3, 247-249.

[Relx] http://www.relexsoftware.com/

[Saph] http://saphire.inel.gov/

[Schn92] N. Schneidewind, T. Keller, “Applying Reliability Models to the Space
Shuttle”, IEEE Software, vol 9, no. 4, pp. 28-33, July, 1992

[Schn01] N. Schneidewind, “Investigation of the Risk to Software Reliability and
Maintainability of Requirements Changes”, proceedings of International
Conference on Software Maintenance, Nov 7-9, 2001, Florence, Italy, pp.
127-137

[Shoo72] M. Shooman, "Probabilistic Models for Software Reliability Prediction",
Conference on Statistical Methods for the Evaluation of Computer Systems
Performance, Brown University, November 22-23, 1971. Published in
Probabilistic Models for Software, Freiberger, Editor, Academic Press,
New York, 1972.

[SMERFS] http://www.slingcode.com/smerfs

[Stor96] N. Storey, Safety-Critical Computer Systems. Addison-Wesley, 1996.

[Sul99] K. J. Sullivan, J. B. Dugan, and D. Coppit, “Developing A High-Quality
Software Tool For Fault Tree Analysis”, Proceedings of the International
Symposium on Software Reliability Engineering, pages 222-31, Boca
Raton, Florida, 1999.

