From the last lecture we know, in the random walk on a line, the expected time to reach n starting at 0 is n^2. In today's lecture we use random walks on line to devise algorithms for 2SAT and 3SAT.

A Randomized algorithm for 2-SAT

Let ϕ be a 2CNF formula. Consider the following algorithm.

1. Input $\phi(y_1, \ldots, y_n)$

2. Pick an arbitrary assignment x
 - if $\phi(x) = 1$ output x and Accept
 - else pick a clause that x does not satisfy
 (this clause has 2 literals and x sets both to be false)
 Randomly pick one of the literals and update x by making that literal true

3. Repeat Step 2 for m times

If the input formula is not satisfiable, the the algorithm does not accept. From now, we assume that the input formula is satisfiable. Let $a = a_1 \cdots a_n$ be a satisfying assignment.

Let x_t denote the assignment at the beginning of t^{th} iteration of the loop. Let X_t be a random variable that represents the number of bits at which x_t and a match. Observe that the algorithm accepts when X_t reaches n or when x becomes another satisfying assignment of ϕ.

Observe that if x_t and a matches at j places, then x_{t+1} matches with a at either $j + 1$ or $j - 1$ places. Thus

$$Pr[X_{t+1} = j + 1|X_j = j] \geq \frac{1}{2}$$

$$Pr[X_{t+1} = j - 1|X_j = j] \leq \frac{1}{2}$$

However, these probabilities do not exactly correspond to a random walk on a line. However, the worst case scenario is when $Pr[X_t = j + 1|X_t = j] = \frac{1}{2}$ and $Pr[X_t = j - 1|X_t = j] = \frac{1}{2}$. Thus the worst-case behavior of the algorithm corresponds to a random walk on a line.

From last lecture, we know that the expected number of steps to reach n from 0 is n^2. Thus the expected number of steps to for the algorithm to accept is n^2.

Let X denote the number of steps to reach n, then $E(X) = n^2$

According to Markov’s inequality, $Pr[X \geq a] \leq \frac{E(X)}{a}$,

Thus the probability that, after $2n^2$ steps, we have not reached n is

$$Pr[X \geq 2n^2] \leq \frac{E(X)}{2n^2} = \frac{n^2}{2n^2} = \frac{1}{2}$$
If we set $m = 2bn$, then the probability of error $\leq \frac{1}{2^k}$
The expected time of running the algorithm $= O(n^2b)$

A randomized algorithm for 3-SAT

What happens when we use similar ideas to arrive at a randomized algorithm for 3SAT? The main difference is in Step 2, when we randomly pick a literal that make it true, the the probability that we picked correct literal is at least $1/3$, and the probability that we picked a wrong literal is at most $2/3$. Now, this corresponds to the following random walk on a line.

$$Pr[X_{t+1} = j + 1|X_j = j] = \frac{1}{3}$$
$$Pr[X_{t+1} = j - 1|X_j = j] = \frac{2}{3}$$

Let h_j denote $E(X_j)$.

$$h_j = \frac{1}{3}[1 + h_{j+1}] + \frac{2}{3}[1 + h_{j-1}]$$
$$= \frac{h_{j+1}}{3} + \frac{2h_{j-1}}{3} + 1$$

Now, $2h_j - 2h_{j-1} = h_{j+1} - h_j + 3$. Let $f_j = h_j - h_{j-1}$. Then,

$$2f_j = f_{j+1} + 3$$
$$f_{j+1} = O(2^j)$$
$$h_j = h_{j+1} + O(2^j)$$
$$h_0 = O(2^n)$$

So a similar strategy will give a 2^n time algorithm. However, we know that there is a deterministic algorithm that runs in time 2^n. Now we will see how to bring down the running time.

First consider the following scenario. Suppose we are at position $n - 1$, we assume that at any point of time, we have the ability to come back $n - 1$ if we wish. Since $h_{n-1} = O(2^n)$, the expected number of steps to reach n is roughly 2^n. So, if our goal is to reach n, we have the following strategy. Walk for 2^{n+1} steps, then with probability at least $1/2$, we will reach n. However, here is a better strategy: Take one step, if we have not reached n, then go back to $n - 1$. Now repeat this process t times. Within each iteration, the probability of reaching n is $1/3$. Thus the probability that this strategy does not take us to n within t steps is $(2/3)^t$. This strategy is obviously better than the previous one.
Intuitively, if we have not reached \(n \) after a certain number steps, then we must have taken a large number of left moves and so after we are far away from \(n \). Reaching \(n \) from this position takes exponential steps. So we are better off starting all over again rather than trying to reach \(n \) from this position.

Using these ideas, we arrive at the following algorithm for 3SAT.

1. Input \(\phi(y_1 \cdots y_n) \)
2. Randomly pick an assignment \(x \)
 (a) If \(\phi(x) = 1 \) then Accept
 Else \(x \) does not satisfy a clause
 Randomly pick a literal in the clause and make it true
 That is our new \(x \)
 (b) Repeat 2(a) for \(3n \) times
3. Repeat 2 for \(m \) times

Clearly, the algorithm does not accept if \(\phi \) is not satisfiable. Assume \(\phi \) is satisfiable, and let \(a \) be a satisfying assignment.

\(x_t \rightarrow \) Assignment at \(t \)-th iteration of inner loop
\(X_t \rightarrow \# \) of places \(x_t \) and a match

Suppose \(X_0 = n - j \). This scenario corresponds to random walk starting at position \(n - j \).

Let’s denote \(q_j \) as the probability of reaching \(n \) from \(n - j \) with \(3n \) steps. We can reach \(n \) by making \(j + k \) right moves and \(k \) left moves. Thus

\[
q_j \geq \max_{j+2k \leq 3n} \left(\frac{j + 2k}{k} \right) \left(\frac{1}{3} \right)^j \left(\frac{2}{3} \right)^k
\]

Pick \(k = j \)

\[
q_j \geq \left(\frac{3^j}{j} \right) \left(\frac{1}{3} \right)^{2j} \left(\frac{2}{3} \right)^j
\]

By using Stirling’s approximation, we obtain

\[
q_j \geq \frac{c}{\sqrt{j}} \times \frac{1}{2^j},
\]

where \(c \) is constant close to 1.

If \(x_0 \) matches with \(a \) at \(n - j \) places, then the inner loop finds an assignment with in \(3n \) steps with probability \(\geq q_j \). So the probability that the inner loop finds an assignment within \(3n \) steps is: (let’s denote this prob as \(q \))

\[
q \geq \sum_{j=0}^{n} \Pr[X_0 = n - j]q_j
\]
Thus

\[
q \geq \sum_{j=0}^{n} \binom{n}{j} \frac{1}{2^n} \times \frac{c}{\sqrt{j}} \times \frac{1}{2^j} \geq \frac{c}{\sqrt{n}} \times \left(\frac{3}{4}\right)^n
\]

So the expected number of times that the inner loop need to be repeated till it finds a satisfied assignment is \(\frac{1}{q}\). By Markov’s inequality, if we repeat inner loop \(\frac{2}{q}\) times, we obtain a satisfied assignment with probability \(\geq \frac{1}{2}\). Thus we repeat the entire algorithm \(n\) times, then the error probability is \(1/2^n\). The running time of the algorithm is \(O\left(\left(\frac{1}{4}\right)^n n^2\right)\). This is a huge improvement over \(2^n\), moreover this algorithm is very easy to implement.