Definition: Let H be a set of functions from U to T. H is 2-universal if $\forall x \neq y \in U$, $\alpha, \beta \in T$

$$
Pr_{h \in H}[h(x) = \alpha \wedge h(y) = \beta] = \frac{1}{|T|^2}
$$

Clearly, the set of all functions from U to T is 2-universal. However, the cardinality of this set is very large. Our goal is to construct a family of 2-universal hash functions whose size is small.

We will see some examples now.

Let $U = \{0, 1, 2, ..., p - 1\}$, and $T = \{0, 1, 2, ..., p - 1\}$, where p is a prime.

$$
H = \{h_{ab} \mid a, b \in Z_p\}
$$

where

$$
h_{ab}(x) = ax + b (\mod p)$$

Fix $x \neq y \in U$, $\alpha, \beta \in T$

$$
Pr_{a,b \in Z_p}[ax + b = \alpha \wedge ax + b = \beta] = \frac{|\{(a,b) \in Z_p^2 \mid ax + b = \alpha \wedge ay + b = \beta\}|}{|Z_p|^2} = \frac{1}{p^2} = \frac{1}{|T|^2}
$$

We have to show that $|\{(a,b) \in Z_p^2 \mid ax + b = \alpha \wedge ay + b = \beta\}| = 1$.

$$
|\{(a,b) \in Z_p^2 \mid ax + b = \alpha \wedge ay + b = \beta\}| = \text{the number of pairs } (a,b) \text{ satisfying the equations}
$$

$$
\begin{pmatrix}
 x & 1 \\
 y & 1
 \end{pmatrix}
\begin{pmatrix}
 a \\
 b
 \end{pmatrix}
= \begin{pmatrix}
 \alpha \\
 \beta
 \end{pmatrix}
$$

since $x \neq y$, the inverse of $\begin{pmatrix}
 x & 1 \\
 y & 1
 \end{pmatrix}$ exists and hence the result follows.

Now suppose $U = GF(2^m)$, and $T = GF(2^m)$.

$$
H = \{h_{ab} \mid a, b \in GF(2^m)\}
$$

where

$$
h_{ab}(x) = ax + b \text{ over } GF(2^m)
$$

It can be shown that H is also 2-universal.

Now consider a more general case where $|T|$ is less than $|U|$. Let $U = GF(2^m)$, and $T = GF(2^n)$ where $m \geq n$.

$$
H = \{h_{ab} \mid a, b \in GF(2^m)\},
$$

where

$$
h_{ab}(x) = \text{first } n \text{ bits of } ax + b \text{ over } GF(2^m).
$$

We will now show that H is 2-universal. Given a n bit string u let $S_u = u \sigma^{m-n}$.
Let \(\alpha \) and \(\beta \) be any two distinct strings from \(GF(2^m) \). Let \(u \) and \(v \) be any two strings from \(GF(2^n) \). Observe that \(h_{ab}(\alpha) = u \) if and only if \(a\alpha + b \in S_u \). Thus

\[
\Pr_{h \in \mathcal{H}}[h(\alpha) = u \wedge h(\beta) = v] = \Pr_{h \in \mathcal{H}}[h(\alpha) \in S_u \wedge h(\beta) \in S_v]
\]

\[
= \sum_{a \in S_u} \sum_{b \in S_v} \Pr_{h \in \mathcal{H}}[h(\alpha) = a \wedge h(\beta) = b]
\]

\[
= \frac{2^{2(m-n)}}{2^{2m}}
\]

\[
= \frac{1}{2^{2n}}
\]

Static Dictionaries

The static dictionary problem is one of the most fundamental data-structuring problems. Informally, an instance of the problem is given by a set \(S \) of keys, each associated with data, and the task is to store \(S \) in a way that allows rapid retrieval of the data of a given key.

Let \(U \) be set of possible key values and a \(S \) is a subset of \(U \). The goal is to store \(S \) in a table \(T \). Suppose \(h \) is function from \(U \) to \(T \) that is one-one on \(S \). Then we can use \(h \) to store \(S \) as follows: Given an element \(k \in S \), we store it at location \(T[h(k)] \). In future, if we want to search for a key \(a \), then we compare \(a \) with \(T[h(a)] \).

Now the question is how to find such a \(h \). Observe that if we allow \(|T| = |U| \), then this is trivial. However we want \(|S| \approx |T| \). To accomplish this, we use 2-universal hash functions. Let \(\mathcal{H} \) be a family of 2-universal hash functions. Let \(|U| = M, |S| = N \), we first consider the case when \(|T| = t = N^2 \). We show that a random function from \(\mathcal{H} \) is one-one on \(S \) with good probability.

For every \(x \) and \(y \) in \(S \), let

\[
C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{else} \end{cases}
\]

\[
C = \sum_{x, y \in S, x < y} C_{xy}
\]

Thus \(C \) is random variable that denotes the number of colliding pairs.

\[
E(C_{xy}) = \Pr_{h \in \mathcal{H}}(h(x) = h(y)) = \frac{1}{t}
\]

\[
E(C) = \sum_{x,y \in S, x < y} \frac{1}{t} = \binom{N}{2} \frac{1}{t}
\]

\[
if \ t = N^2 \
E(C) = \frac{N(N-1)}{2} \frac{1}{N^2}
\]

\[
E(C) \leq \frac{1}{2}
\]
Using Markov inequality,
\[\Pr(C < 1) \geq \frac{1}{2} \]

Thus, if we randomly pick a hash function then probability that there is no collision is at least half. If we randomly pick 100 hash functions then at least one of them is one-one on \(S \) is probability bigger than \(1 - 1/2^{100} \).

Thus the time required to find \(h \) is \(O(N) \), the space required to store \(S \) in the size of \(T \) which is \(N^2 \). The query time is \(O(1) \). Next we see how two reduce \(|T| = O(N) \). For this we use a two-stage hashing.

If \(t = N \),
\[E(C) \leq \frac{N}{2} \]

By Markov inequality,
\[\Pr(C \geq N) \leq \frac{1}{2} \Rightarrow \Pr(C < N) \geq \frac{1}{2} \]

Thus for a random \(h \), expected number of colliding pairs is less than \(N \), with probability at least half. Pick such function \(h \). This is our hash function in first stage.

For \(i \in T \), let \(N_i \) is the set of elements from \(S \) that are mapped to \(i \) via \(h \). Let \(|N_i| = n_i \). Now, store \(N_i \) is in a secondary table of size \(n_i^2 \).

The total size of the table is given by
\[N + \sum n_i^2 + \text{ space to store all hash functions} \]

Observe that
\[C = \sum_{i \in T} \left(\frac{n_i}{2} \right), \]
and
\[\sum_{i \in T} \left(\frac{n_i}{2} \right) = \sum \frac{n_i^2}{2} - \sum \frac{n_i}{2} \]

Thus
\[2C = \sum n_i^2 - \sum n_i, \]

Since \(C = N \) and \(\sum n_i \leq N \), \(\sum n_i^2 \leq 3N \).

The number of hash functions we need at the second stage is at most \(N \), and each has function needs \(O(\log |U|) \) space. Since we assumed that the word size of \(\log U \), it follows that that total space needed to store \(S \) is \(O(N) \).

In general, we would like to answer the following question? Let \(\mathcal{H} \) be a family of hash functions from \(U \) to \(T \). Let \(S \) be any subset of \(U \). If we randomly pick a function from \(\mathcal{H} \), then “how much one-one” is \(h \) on \(S \)? We now answer this question.

Let \(|U| = M \), \(|S| = N \), \(|T| = t \). An element \(i \in S \) is said to be unique with respect to \(h \) if \(h^{-1}[h(i)] \cap S = \{i\} \).

We would like to know how many unique elements can \(S \) have?. Let
\[X_i = \begin{cases} 1 & \text{if } i \text{ is unique} \\ 0 & \text{else} \end{cases} \]
\[E(X_i) = \Pr(X_i = 1) = 1 - \Pr(X_i = 0) \]

\[\Pr(X_i = 0) = \Pr_h(\exists j \neq i \text{ and } j \in S, \ h(i) = h(j)) \]

\[\Pr(X_i = 0) \leq \sum_{j \in S, j \neq i} \Pr(h(i) = h(j)) \text{ by union bound} \]

\[\leq \frac{N - 1}{T} \]

Therefore

\[\Pr(X_i = 1) = 1 - \frac{N}{T} + \frac{1}{T} \]

\[E(X_i) \geq 1 - \frac{N}{T} \]

Let \(X \) = the number of unique elements of \(S \).

i.e.

\[X = \sum_{i \in S} X_i \]

\[E(X) \geq N - \frac{N^2}{T} \]

In particular if we take \(T = kN \), then \(E(X) = (1 - 1/k)N \).