Today’s Topic: Pseudo-Random Distributions.

Throughout, X will be a probability distribution over Σ^n and U will be the uniform distribution over Σ^n.

Intuitively, how do we check that $X = U$? We do a statistical test on elements of Σ^n produced by X, and see whether the behavior is uniform. For example, is the parity zero 50% of the time, and one the other 50% of the time? X “passes” a statistical test if the outcome of the test is “close” to what the outcome would be if the test were performed on U.

Formally, a test will be a function $\text{Test} : \Sigma^n \rightarrow \{0, 1\}$. We then look at the size of the difference

$$\left| \Pr_{x\in U} [\text{Test}(x) = 1] - \Pr_{x\in X} [\text{Test}(x) = 1] \right|.$$

If that difference is small, we say X is “random,” i.e., close to the uniform distribution. Again intuitively, if X passes “all possible tests” it is close to random. But what does “all possible” mean?

Definition 1. A distribution is (s, ϵ)-pseudorandom if for all circuits C of size $\leq s$

$$\left| \Pr_{y\in X} [C(y) = 1] - \Pr_{y\in U} [C(y) = 1] \right| \leq \epsilon.$$

Example: The output distribution of pairwise independent generator we have considered in several lectures does beat certain tests. For example, it beats the test that looks at the first two bits x_0x_1 of a string, and outputs 1 if $x_0x_1 = 00$ and outputs 0 otherwise. If the test looks at three bits, though, the pairwise independent generator will fail.

A circuit can perform more complicated operations than the pairwise independent generator. Think of s as “small.” Clearly, by definition, uniform distribution is (s, ϵ) pseudo-random. The interesting question is whether there exist distributions that are “far-away” from being uniform, and yet are (s, ϵ) pseudo-random. The answer is “Yes”. we can build such distributions by diagonalizing against circuits of size s. Pseudo-random distributions do exist, but the question now is: can they be effectively generated?
Definition 2. A family of distributions \(\{X_n\}_{n \in \mathbb{N}} \) is \((s, \epsilon)\)-pseudorandom if for every \(n \) and for all circuits \(C \) if size \(\leq s(n) \) it is the case that

\[
\left| \Pr_{y \in X_n} \left[C(y) = 1 \right] - \Pr_{y \in U_n} \left[C(y) = 1 \right] \right| \leq \epsilon.
\]

In addition to running tests on a distribution, we can assess the distribution’s randomness by trying to predict the bits it generates. This motivates the following definition.

Definition 3. A distribution \(X \) is \((s, \epsilon)\)-unpredictable if for all circuits \(C \) of size \(\leq s \) and for all \(i < n \) it is the case that

\[
\Pr_{y_1 \ldots y_i \in X} [c(y_1 \ldots y_k) = y_{i+1}] \leq \frac{1}{2} + \epsilon.
\]

It turns out that the definition of pseudorandom distribution and unpredictable distribution are equivalent.

Theorem 1. If a distribution \(X \) is \((s, \epsilon)\)-pseudorandom, then it is \((s', \epsilon)\)-unpredictable, where \(s' = s - \mathcal{O}(\log n) \).

Proof. We prove the contrapositive. Suppose \(X \) is \((s', \epsilon)\)-predictable. There exists an \(i \) and a \(C \) of size \(\leq s' \) such that when we randomly pick a string from \(X \)

\[
\Pr_{y_1 \ldots y_i \in X} [c(y_1 \ldots y_i) = y_{i+1}] \geq \frac{1}{2} + \epsilon.
\]

We will build a new circuit \(D \) to run a test on \(X \), as follows:

1. Input \(y_1 \ldots y_n \)
2. Run \(C \)
3. If \(C(y_1 \ldots y_i) = y_{i+1} \), output 1.
4. Else output 0.

If we start with \(U \), \(D \) will output 1 exactly half the time. Therefore

\[
\Pr_{y_1 \ldots y_n \in U_n} [D(y_1 \ldots y_n) = 1] = \frac{1}{2}.
\]

However, because of the predictability of \(X \)

\[
\Pr_{y_1 \ldots y_n \in X_n} [D(y_1 \ldots y_n) = 1] \geq \frac{1}{2} + \epsilon.
\]

Therefore \(X \) is not \((s, \epsilon)\)-pseudorandom. \(\square \)
We can also go the other way.

Theorem 2. If distribution X is (s, ϵ)-unpredictable, then X is $(s', n\epsilon)$-pseudorandom, where $s' = s - \mathcal{O}(n)$.

Proof. Again, we prove the contrapositive. Suppose X is not (s', ϵ)-pseudorandom. Then there exists a circuit C of size $\leq s'$ such that

$$\left| \Pr_{y \in X} [C(y) = 1] - \Pr_{y \in U} [C(y) = 1] \right| \geq \epsilon n.$$

We proceed using a method called the *Hybrid Technique* or *Hybrid Argument*.

Define a distribution H_i as follows:

- Randomly pick $y_1 \ldots y_n \in X$.
- Uniformly at random pick an $(n - i)$-bit string r from Σ^{n-i}.
- Output $y_1 \ldots y_i r$.

Note that $H_0 = U$, $H_n = X$ and H_1 is one bit from X followed by $n-1$ bits from U. We can make the following analysis.

$$\Pr[C(H_n) = 1] - \Pr[C(H_0) = 1] \geq \epsilon n$$

$$= \Pr[C(H_n) = 1] - \Pr[C(H_{n-1}) = 1] + \Pr[C(H_{n-1}) = 1] - \Pr[C(H_{n-2}) = 1] + \Pr[C(H_{n-2}) = 1] - \cdots$$

So there is some i such that $\Pr[C(H_{i+1}) = 1] - \Pr[C(H_i) = 1] \geq \epsilon$. Therefore, we can build a probabilistic circuit D as follows:

- **Input** $y_1 \ldots y_k$.
- Randomly pick $b \in \{0, 1\}$.
- Uniformly at random pick an $n - (i + 1)$-bit string r.
- If $C(y_1 \ldots y_i b r) = 1$ output b Else output \overline{b} (i.e., $1 - b$).

Intuitive observation: Randomness does not really help when we come to circuits. We can convert D to a deterministic circuit. We name probabilities P_i by

$$\Pr[C(H_i) = 1] = P_i$$

$$\Pr[C(H_{i+1}) = 1] = P_{i+1}$$

and define \overline{P}_{i+1} by picking a string according to H_{i+1}, flipping the $(i + 1)^{\text{st}}$ bit and outputting the resulting string.

H_i can be generated as follows.
Toss a coin.
If Heads, act according to H_{i+1}.
If Tails, act according to H_{i+1}.
We define probabilities P'_i by $\Pr[(\overline{H}_{i+1}) = 1] = P'_i$. Note then that
$$P_i = \frac{P_{i+1} + P'_i}{2}.$$
We will now engage in a technical analysis of these probabilities in order to show that D is a witness that X is not unpredictable. Note first that we can decompose the probability that D will output a particular answer by
$$\Pr[D(y_1 \ldots y_k) = y_{k+1}] = \Pr[C(y_1 \ldots y_k|b) = y_{k+1}]$$
$$= \Pr[C(y_1 \ldots y_k|b) = 1 \mid b = y_{k+1}] \cdot \Pr[b = y_{k+1}]$$
$$+ \Pr[C(y_1 \ldots y_k|b) = 0 \mid b \neq y_{k+1}]$$
$$\cdot \Pr[b \neq y_{k+1}].$$
Second, we observe that
$$\Pr[C(y_1 \ldots y_k|b) = 1 \mid b = y_{k+1}] = \Pr[C(y_1 \ldots y_{k+1}|b) = 1]$$
$$= \Pr[C(H_i) = 1]$$
$$= P_i$$
and further that
$$\Pr[C(y_1 \ldots y_k|b) = 0 \mid b \neq y_{k+1}] = \Pr[C(\overline{H}_{i+1}) = 0]$$
$$= 1 - \Pr[C(\overline{H}_{i+1}) = 1].$$
Combining this all together, we get
$$\Pr[D(y_1 \ldots y_k) = y_{k+1}] = \frac{P_i + 1 - P'_i}{2}$$
$$P'_i = 2P_i - P_{i+1}$$
$$= \frac{1 + P_{i+1} - P_i}{2}$$
$$\geq \frac{1}{2} + \frac{\epsilon}{2}.$$
This shows that the distribution X is not (s, ϵ)-unpredictable, thus proving the contrapositive of the theorem statement. We are done.\qed