1. Complexity Measure

Definition 1. A formal complexity measure is a function \(k \) from \(B_n \) to \(\mathbb{N} \) where \(B_n \) is a set of all boolean functions over \(\Sigma^n \) such that

1. \(k(x_i) = 1 \) for all \(1 \leq i \leq n \),
2. \(k(f) = k(\neg f) \) for \(f \in B_n \), and
3. \(k(f \lor g) \leq k(f) + k(g) \) for \(f, g \in B_n \).

By the definition and using the rules of deMorgan \(k(f \land g) = k(\overline{f \lor g}) \leq k(f) + k(g) \) also holds. Since Fsize satisfies above conditions, it is also a formal complexity measure. In addition, Fsize is the largest formal complexity measure as in the following theorem.

Theorem 1. Let \(k \) be a formal complexity measure, then for every function \(f \in B_n \)

\[
Fsize(f) \geq k(f).
\]

Proof. By induction on \(\ell = Fsize(f) \), let’s start with the case \(\ell = 1 \), if \(\ell = 1, f(x_1, \ldots, x_n) = x_i \), \(Fsize(f) = 1 = k(f) \) by definition. Let \(\ell = Fsize(f) > 1 \) and let \(F \) be an optimal formula for \(f \). Consider the formula tree of \(F \). Without loss of generality, the last gate of \(F \) is an \(\lor \) gate, otherwise the rule of deMorgan can be considered. Let \(G \) and \(H \) be the subformulas that feed into this gate, and let \(g \) and \(h \) be the functions computed by them. Thus \(f = g \lor h \). Since \(F \) is optimal, \(G \) and \(H \) are optimal formulas for \(g \) and \(h \). Thus FSize\((g) = Size(G) \) and FSize\((h) = Size(H) \). Thus

\[
FSize(f) = Size(F) = Size(G) + Size(H) = FSize(g) + FSize(h).
\]

By the induction hypothesis,

\[
Fsize(f) = Fsize(g) + Fsize(h) \geq k(g) + k(h) \geq k(g \lor h) = k(f).
\]

Above theorem provides a tool to lower bound formula size. Define a complexity whose value is “easy” to bound, this yields a lower bound on formula size. We now define a complexity measure, this measure is also known as Krapchenko’s measure.

Definition 2. Given a function \(f \), let \(A \subseteq f^{-1}(0) \), \(B \subseteq f^{-1}(1) \), a set of neighbors \(\langle a, b \rangle \in A \times B \) is defined as

\[
N(A, B) = \{ \langle a, b \rangle | a \in A, b \in B, a \text{ and } b \text{ differ in exactly one bit} \}
\]

In other words, \(N(A, B) \) is a set of \(\langle a, b \rangle \) pairs where \(f(a) = 0 \) and \(f(b) = 1 \) and there is only one bit of difference between \(a \) and \(b \). Let

\[
N(A, B) = |N(A, B)|^2
\]

The complexity measure is defined as

\[
k_{AB} = \frac{|N(A, B)|^2}{|A||B|}.
\]

The complexity measure is defined as

\[
k(f) = \max \left\{ k_{AB} | A \subseteq f^{-1}(0), B \subseteq f^{-1}(1) \right\},
\]

where the maximum is taken over all possible sets \(A \subseteq f^{-1}(0) \) and \(B \subseteq f^{-1}(1) \).
Theorem 2. k is a formal measure.

Proof. To prove we have to show that k satisfies all three conditions of formal complexity measure. Hence, the theorem will be proved on three parts. Let $f(x_1, \ldots, x_n) = x_i$, $f^{-1}(0) = \{0,1\}^{n-1}0\{0,1\}^{n-i}$ and $f^{-1}(1) = \{0,1\}^{n-1}1\{0,1\}^{n-i}$.

First, we claim that $k(f) = k(x_i) = 1$. Let $A \subseteq f^{-1}(0)$, $B \subseteq f^{-1}(1)$. For $a \in A$, there is only one candidate b is only obtained by flipping ith bit of a. Thus, $N(A, B) \leq |A|$ and $N(A, B) \leq |B|$ and following holds

$$k_{AB} = \frac{|N(A, B)|^2}{|A||B|} \leq 1.$$

If $A = f^{-1}(0)$ and $B = f^{-1}(1)$, then for every $a \in A$, there exists a corresponding neighbor $b \in B$. Thus, $N(A, B) = |B| = |A|$ and $k_{A, B} = 1$. Therefore, $\max k_{AB} = k(f) = 1$.

Second, $k(f) = k(\bar{f})$. By the definition, above measure is symmetric. In addition $f^{-1}(0) = \neg f^{-1}(1)$ and vice versa. For this reason, we can conclude that $k(f) = k(\bar{f})$.

Lastly, $k(f \lor g) \leq k(f) + k(g)$. Let’s denote $h = f \lor g$ and let S_0 and S_1 be two sets such that $S_0 \subseteq h^{-1}(0)$, $S_1 \subseteq h^{-1}(1)$. Then

$$k_{s_0s_1} = \frac{|N(S_0, S_1)|^2}{|S_0||S_1|}$$

and $k(h) = \max \{k_{s_0s_1} | S_0 \subseteq h^{-1}(0), S_1 \subseteq h^{-1}(1)\}$. Since $h = f \lor g$, $f^{-1}(0) \cap g^{-1}(0) = h^{-1}(0)$ and $S_0 \subseteq f^{-1}(0)$ and $S_0 \subseteq g^{-1}(0)$. Let’s partition S_1 into two disjoint sets C and D such that $C \cup D = S_1$, $C \subseteq f^{-1}(1), D \subseteq g^{-1}(1)$\(^1\). Then $N(S_0, S_1)$ is the union of $N(S_0, C)$ and $N(S_0, D)$ where $N(S_0, C)$ and $N(S_0, D)$ are disjoint. By the definition, following holds

$$k(f) \geq k_{s_0C} = \frac{|N(S_0, C)|^2}{|S_0||C|}$$

and

$$k(g) \geq k_{s_0D} = \frac{|N(S_0, D)|^2}{|S_0||D|}.$$

It is sufficient to prove that

$$\frac{|N(S_0, S_1)|^2}{s_0s_1} \leq \frac{p^2}{s_0C} + \frac{q^2}{s_0D}$$

\(^1\)Every element in a set $f^{-1}(1) \cap g^{-1}(1)$ should be placed on C or D not on both.
where $|C| = c$, $|D| = d$, $|N(S_0, C)| = p$, and $|N(S_0, D)| = q$. Further, $S_1 = C \cup D$ and $C \cap D = \emptyset$ thus $s_1 = c + d$ and we have $N(S_0, S_1) = N(S_0, C) + N(S_0, D)$. Thus,

\[
\begin{align*}
\frac{|N(S_0, S_1)|^2}{s_0s_1} &\leq \frac{p^2}{s_0c} + \frac{q^2}{s_0d} \\
\Rightarrow \frac{(p + q)^2}{s_0(c + d)} &\leq \frac{p^2}{s_0c} + \frac{q^2}{s_0d} \\
\Rightarrow \frac{(p + q)^2}{(c + d)} &\leq \frac{dp^2 + cq^2}{cd}
\end{align*}
\]

Consequently,

\[
\frac{cd(p + q)^2}{s_0s_1} \leq (c + d) \left(\frac{dp^2 + cq^2}{cd} \right) \Rightarrow 2cdpq \leq d^2p^2 + c^2q^2 \Rightarrow 0 \leq (dp - cq)^2
\]

Consequently, $k(f \lor g) = \frac{(p+q)^2}{s_0s_1} \leq \frac{p^2}{s_0c} + \frac{q^2}{s_0d} \leq k(f) + k(g)$. \qed

We can use Krapchenko’s measure to bound the formula complexity of the parity function.

Theorem 3. For the parity function $f(x_1, \ldots, x_n) = \bigoplus_{i=1}^n x_i$, $\theta(n^2) = Fsize(f)$.

Proof. First, we will prove the lower bound as $n^2 \leq Fsize(f)$. Let $A = f^{-1}(0)$ and $B = f^{-1}(1)$. Because flipping any one bit causes the function to return different value, there are n neighbors for every $a \in A$ and vice versa. As a result, $N(A, B) = n|A| = n|B|$. Therefore,

\[
k_{AB} = \frac{|N(A, B)|^2}{|A||B|} = \frac{n|A||n|B|}{|A||B|} = n^2
\]

As a consequence, for parity function $f : \Sigma^n \rightarrow \Sigma$, every formula requires at least n^2 size, $n^2 \leq Fsize(f)$.

Moreover, the upper bound for $Fsize$ can be derived for $n = 2^k$ for $k \in \mathbb{N}$. The parity function for Σ^n can be decomposed into four functions for $\Sigma^{n/2}$ as

\[
f_n(x) = (f_{n/2}(x_\ell) \land \neg f_{n/2}(x_r)) \lor (\neg f_{n/2}(x_\ell) \land f_{n/2}(x_r)),
\]

where $x \in \Sigma^n$ and $x_\ell, x_r \in \Sigma^{n/2}$ where $x = (x_\ell, x_r)$. With $Fsize(f_n) \leq 4Fsize(f_{n/2})$ and $Fsize(f_1) = 1$, we can conclude that $Fsize(f_n) \leq 4^{\log_2 n} = 2^{2\log_2 n} = 2^{\log_2 n^2} = n^2$. \qed

We now observe the Krapchenko’s measure can not yield bounds that are bigger than n^2.

Lemma 1. For all $f : \Sigma^n \rightarrow \Sigma$, $k(f) \leq n^2$.

Proof. For any $a \in A$ or $b \in B$, there are at most n neighbors. Thus, $N(A, B) \leq \min \{n |A|, n |B| \}$ and

\[
k_{AB} = \frac{|N(A, B)|^2}{|A||B|} \leq \frac{n |A||n|B|}{|A||B|} = n^2.
\]

\qed