1. Time Vs. Space

A Turing machine can visit at most \(t(n) \) cells in \(t(n) \) time. This implies that any deterministic \(t(n) \)-time bounded machine can be simulated by a \(t(n) \)-space bounded machine. Can we improve this space bound asymptotically? In other words, is there a language in \(\text{DTIME}(t(n)) \) that takes less than \(t(n) \) space? We will show the following theorem.

Theorem 1. \(\text{DTIME}(t(n)) \subseteq \text{DSPACE}(t(n)/\log t(n)) \).

Using space hierarchy, we have the following straightforward corollary.

Corollary 1. \(\text{DTIME}(t) \subseteq \text{DSPACE}(t) \)

Proof. We know by space hierarchy theorem that \(\text{DSPACE}(t(n)/\log t(n)) \subseteq \text{DSPACE}(t(n)) \), which implies, \(\text{DTIME}(t(n)) \subseteq \text{DSPACE}(t/\log t) \subseteq \text{DSPACE}(t) \). \(\square \)

To prove the above theorem, we will consider block respecting Turing machines. Suppose \(M \) is a \(t(n) \) time bounded \(k \)-tape Turing machine. Let \(1 \leq b(n) \leq t(n)/2 \) and \(a(n) = t(n)/b(n) \). Divide the computation of \(M \) into \(a(n) \) time segments where each segment has \(b(n) \) steps. Since \(M \) os \(t(n) \) time bounded, it visits atmost \(t(n) \)-cells on each tape. Now divide each tape into \(a(n) \) segments and thus each segment has \(b(n) \) cells.

Definition 1. \(M \) is \(b(n) \)-block respecting if every tape head of \(M \) crosses a block boundary at time \(c.b(n) \), where \(c \) is an integer.

We will use the following claim without proof.

Claim 1. If \(M \) is \(t(n) \) time bounded \(k \)-tape Turing machine and \(1 \leq b(n) \leq t(n)/2 \), then there is \((k+1) \)-tape, \(b(n) \) block respecting machine \(M' \) that runs in time \(O(t(n)) \), and \(L(M) = L(M') \).

Let \(L \) be a language in \(\text{DTIME}(t(n)) \). Set \(b(n) = t^{2/3}(n) \). Let \(M \) be a \(b(n) \) block respecting Turing machine that decides \(L \) in time \(t(n) \). Set \(a(n) = t^{1/3}(n) \). Define a computation graph \(G \) of \(M \) in the following way. \(G = (V, E) \) where \(V = \{1, 2, \ldots, a(n)\} \). For every \(i \geq 1 \), \((i, i + 1) \in E \). Further, \((i, j) \in E \) if for some tape, the tape head is in some block \(l \) during time segment \(i \) and then first time that tape head is again in block \(l \) in time segment \(j \). Note that \(j \) could be \(i + 1 \). This yields a a multigraph and the maximum in-degree of a vertex is \((k + 1) \). We add some dummy tape heads to make in-degree uniform \((d = k + 1) \) for each node.

Pebbling Game. We now describe a pebbling game that will eventually be used in our space efficient simulation of \(M \). Suppose we have a directed acyclic graph \(G = (V, E) \). We want to place a pebble on a special vertex \(w \in V \) with the minimum number of pebbles. The rules for the game are as follows:

- We can remove a pebble from a vertex at any time.
- We can place a pebble at a vertex if all its predecessors are pebbles.
We can always pebble a graph with n nodes with n pebbles. Is it possible to pebble with much less than n pebbles? Let G be a graph with in degree d and G_d be the set of directed acyclic graphs (DAG) with in-degree d.

Theorem 2. Any graph G in G_d can be pebbled with $(c'n/\log n)$ pebbles for some constant c, where n is the number of vertices in G.

We say that a graph requires P pebbles, if there is a vertex $w \in G$ and w can not be pebbled with $P - 1$ pebbles. Let $R(P) = \min\{\text{card}(E(G)) \mid G \in G_d \text{ and } G \text{ requires } P \text{ pebbles}\}$.

We will show that $R(P) > c'P\log P$ for some $c' > 0$. Because of the bound on in degree this is same as: $\min\{\text{card} V(G) : G \in G_d \text{ and } G \text{ requires } P \text{ pebbles}\} > (c'/d)P\log P$. This implies that for graphs with $(c'/dP)\log P$ vertices, P pebbles are sufficient. This in turn implies the theorem.

To prove that $R(P) \geq c'P\log P$, it is sufficient to show that $R(P) = 2R(P/2 - d) + P/4d$.

We will first show that every graph that requires P pebbles can be divided the graph into two sub graphs each requiring $P/2 - d$ pebbles.

Let $G = (V, E)$ that requires P pebbles. Let $V_1 = \text{set of all vertices that can be pebbled with } \leq P/2 \text{ pebbles}$. Let G_1 be the graph induced by V_1. $G_1 = (V_1, E_1)$. Let $V_2 = V - V_1$, and $G_2 = (V_2, E_2)$ is the subgraph induced by V_2. Let $E_3 = E - (E_1 \cup E_2)$. By definition, every vertex in V_2 requires $P/2$ pebbles.

Claim 2. If we play the pebbling game in G_2, then we require $(P/2 - d)$ pebbles.
Proof. We will prove this by contradiction by proving that if every vertex of\(G_2 \) requires less than \((P/2 - d)\) pebbles (Let us say at most \((P/2 - d - 1)\) pebbles), then \(P - 1 \) pebbles will be sufficient for \(G \) which will be in contradiction to our assumption that \(P \) pebbles are required for \(G \). Let \(S \) be a strategy that can pebble very vertex in \(G_2 \) using \(P/2 - d - 1 \) pebbles. By the definition of \(G_1 \), there is a strategy \(S' \) that can pebble any vertex in \(G_1 \) using \(P/2 \) pebbles. Consider the following strategy to pebble \(G \): This strategy divides its pebbles set into two parts. First part contains \(P/2 + d \) pebbles and the second part contains \(P/2 - d - 1 \) pebbles. If we have to pebble a vertex from \(G_1 \), then by definition \(P/2 \) pebbles are sufficient. Suppose the target vertex is in \(G \). Now follow the strategy \(S \) using pebbles from the second part. Say this strategy places a pebble in \(v \in V_2 \). We may not be able to place a pebble on \(v \) immediately because \(v \) may contain some predecessors in \(V_1 \). As the indegree is \(d \), \(v \) has \(d' \leq d \) predecessors on \(V_1 \). Let \(\{w_1, w_2, \ldots, w_{d'}\} \) are predecessors of \(v \) that are in \(V_1 \). First pebble \(w_1 \) using strategy \(S' \) and using pebbles from the first part. For this we need at most \(P/2 \) pebbles. Keep the pebble on \(w_1 \) and remove all pebbles. Now pebble \(w_2 \) using strategy \(S' \) using the pebbles from the first part. This can be done using at most \(P/2 \) pebbles. Since we can not use the pebble that is already placed on \(w_1 \), by now we may have used \(P/2 + 1 \) pebbles and placed pebbles on both \(w_1 \) and \(w_2 \). Now keep the pebble on \(w_2 \) and pebble \(w_3 \) using strategy \(S' \). Repeat this process. At the end of this each of \(w_1, w_2, \ldots, w_{d'} \) has a pebble on it and we have used at most \(P/2 + d \) pebbles. Now we can place a pebble on \(v \) as per the strategy \(S \) and remove all pebbles from \(w_1, \ldots, w_{d'} \). Since strategy \(S \) uses at most \(P/2 - d - 1 \) pebbles, we can pebble any vertex in the graph with \(P/2 - 1 \) pebbles. This is a contradiction.

Claim 3. If we only pebble \(G_1 \), we require \((P/2 - d)\) pebbles.

Proof. We will first show that there exist a vertex \(v \) in \(V_2 \) such that all its predecessors are in \(V_1 \). Suppose not. Consider a vertex \(w \). By our assumption, it has a predecessor \(w' \) in \(V_2 \). Now mark \(w \) and consider \(w' \). By the assumption, at has a predecessor \(w'' \) in \(V_2 \). Mark \(w' \) and consider \(w'' \). Repeat this process. Since there are finitely many vertices in \(V_2 \), this process must return to a vertex that is already marked. This means that \(G \) has a cycle. However, \(G \) is a DAG.

Assume that \(G_1 \) requires \((P/2 - d - 1)\) pebbles. Let \(v \) be a vertex from \(V_2 \) that has all its predecessors in \(V_1 \). Assume that its predecessors are \(w_1, w_2, \ldots, w_l \) \((l \leq d)\). Consider the following strategy to pebble \(v \): Pebble \(w_1 \) using \(P/2 - d - 1 \) pebbles. Keep the pebble on \(w_1 \) and remove all other pebbles. Now pebble \(w_2 \). Repeat this till all of \(w_1, \ldots, w_l \) have pebbles. Total number of pebbles used for this is \(P/2 - d + l - 2 \). Now place a pebble on \(v \). Thus we can pebble \(v \) using \(P/2 - d + l - 1 \) pebbles. Since \(l \leq d \), we can pebble \(v \) using \(P/2 - 1 \) pebbles. However, by the definition of \(V_2 \), every vertex in \(v_2 \) requires \(P/2 \) pebbles. This is a contradiction.

So for we have seen that \(R(P) \geq 2R(P/2 - d) \). In the next lecture we will prove prove that the inequality \(R(P) \geq 2R(P/2 - d) + P/4d \) holds.