1. **Time/Space tradeoff for SAT**

We don’t know whether SAT can be solved in polynomial time or linear space in deterministic machine. However, we know that SAT can *not* be solved simultaneously in polynomial time and polylog space in a deterministic machine. In particular, we know

Theorem 1. SAT $\not\in$ TISP$(n^c, \log n)$ if $c < \sqrt{2}$.

To start with, we prove the following theorem and then get the above result as a straightforward corollary.

Theorem 2. NTIME$(n^c) \not\in$ TISP$(n^c, \log^2 n)$ if $c < \sqrt{2}$.

We assume that $t(n)$ is a time constructible function and $s(n)$ is a space constructible function on input size n. As stated in the last lecture, we prove a “speed-up lemma” and a “slow-down lemma” using the power of alternations to prove the above theorems.

Lemma 1 (Speed-up lemma). TISP$(t(n), s(n)) \subseteq \Sigma_2$TIME$(\sqrt{t(n)s(n)})$.

Proof. Let a language $L \in$ TISP$(t(n), s(n))$ and M be the corresponding k-tape deterministic turing machine that accepts L simultaneously in time $t(n)$ and space $s(n)$. Fix an input x, $|x| = n$. Now consider the configuration of the machine M on input x. Remember that the configuration of a machine is determined by the tape head positions and contents of each tape. So the number of bits required to describe a configuration of the machine M is $k(s(n) + \log s(n)) \leq C.s(n)$, where C is some constant. Suppose C_0 is the initial configuration and C_A is the accepting configuration. Then we have the following.

M accepts x \iff we can go from C_0 to C_A in $t(n)$ steps

$\iff \exists C_m$ such that M can go from C_0 to C_m in $t(n)/2$ steps

and C_m to C_A in $t(n)/2$ steps

We write $C_i \xrightarrow{t} C_j$ to denote that C_j can be reached from C_i in t steps.

Now consider the following Σ_2-machine:

1. (1) start in \exists state.
2. (2) guess configuration C_m of length $O(s(n))$.
3. (3) go to \forall state.
4. (4) guess $x \in \{0, 1\}$.
5. (5) if $x = 0$, accept if $C_0 \xrightarrow{t(n)/2} C_m$.
6. (6) if $x = 1$, accept if $C_m \xrightarrow{t(n)/2} C_A$.

Guessing the configuration C_m takes $O(s(n))$ time and the machine accepts in time $t(n)/2$. So we get $TISP(t(n), s(n)) \subseteq \Sigma_2$TIME$((s(n) + t(n))/2)$. This is only a constant factor improvement in time. Using this idea, we can achieve an asymptotic improvement. Note that instead of going from C_0 to C_A in two steps, we can go $C_0 \xrightarrow{t(n)/b} C_1$, $C_1 \xrightarrow{t(n)/b} C_2$, \ldots, $C_{b-1} \xrightarrow{t(n)/b} C_b$, where C_b is the accepting state. Now consider the following Σ_2-machine.
(1) input \(x\), \(|x| = n\).
(2) fix \(b\).
(3) start in \(\exists\) state.
(4) guess configurations \(C_1, \ldots, C_{b-1}\) of length \(O(s(n))\).
(5) go to \(\forall\) state.
(6) guess \(x \in \{0, 1, \ldots, b - 1\}\).
(7) accept if \(C_i \xrightarrow{t(n)/b} C_{i+1}\), else reject.

Total time taken by this new \(\Sigma_2\)-machine is \(O(b.s(n)) + \log b + t(n)/b\). Now our goal is to optimize \(b\) such that this expression is minimum. Simple calculations show that for \(b = \sqrt{t(n)/s(n)}\), the time bound is minimum, i.e., \(\sqrt{t(n)s(n)}\). Hence proved. \(\square\)

Note that \(t(n) \geq n^2\) is a necessary condition for this lemma to hold, as reading the input \((\sqrt{t(n)s(n)} = \sqrt{n\log n} \geq n)\) requires \(n\) time. We have an immediate corollary.

Corollary 1. If \(c \geq 2\), \(TISP\left(n^c, \log^2 n\right) \subseteq \Sigma_2 \text{TIME}\left(n^{c/2} \log^{1/2} n\right)\).

Now we prove the “slow-down lemma”.

Lemma 2 (Slow-down lemma). If \(\text{NTIME}(n) \subseteq TISP(n^c, \log^2 n)\), then \(\Sigma_2 \text{TIME}(t(n)) \subseteq \text{NTIME}(t(n)^c)\).

Proof. The hypothesis \(\text{NTIME}(n) \subseteq \text{DTIME}(n^c)\) implies \(\text{co-NTIME}(n) \subseteq \text{DTIME}(n^c)\), as deterministic classes are closed under complement. Now consider a language \(L \in \Sigma_2 - \text{TIME}(t(n))\). Then there exists a constant \(d\) and relation \(R(\ldots, \ldots)\) such that

\[x \in L \iff \exists u, \ |u| = d.t(n) \ \forall v, \ |v| = d.t(n) \ R(x, u, v) = 1\]

Note that the relation \(R\) can be decided in linear time in the input size in deterministic machine, i.e., in \(O(t(n))\). Now define another language \(L'\)

\[L' = \{<x, u> \mid |x| = n \text{ and } |u| = d.t(n) \text{ such that } \forall v, \ |v| = d.t(n) \ R(x, u, v) = 1\}\]

It’s easy to see that \(L' \in \text{co-NTIME}(n)\). So, \(L' \in \text{DTIME}(n^c)\). Then we have the following equivalent statements:

\[x \in L \iff \exists u, |u| = d.t(n) < x, u \in L' \]
\[\iff \exists \text{machine } M' \text{ that decides } L' \text{ in } n^c \text{ time} \]
\[\iff \exists u, |u| = d.t(n)[M'(x, u) \text{ accepts}] \]
\[\iff \exists u, |u| = d.t(n)[R'(x, u) = 1]\]

where the deterministic machine \(M'\) accepts in time \(O((n + t(n))^c) = O(t(n)^c)\) and the relation \(R'\) can be decided in \(O(t(n)^c)\) time. Hence \(L \in \text{NTIME}(t(n)^c)\). \(\square\)

Now the proof the main theorem has the following flavor: . We have the following chain of inclusions. \(\text{NTIME}(n) \subseteq TISP(n^c, \log^2 n) \subseteq \Sigma_2 - \text{TIME}(n^{c/2} \log n) \subseteq \text{NTIME}(n^{c/2} \log^{1/2} n)\). If \(c < \sqrt{2}\), this is a contradiction. This reasoning is almost correct, except that if \(c < 2\), we cannot apply the speed-up lemma. We will see how to get over this minor technical difficulty.
Lemma 3. If \(\text{NTIME}(n) \subseteq \text{TISP}(n^c, \log^2 n) \), then \(\text{NTIME}(n^4) \subseteq \text{TISP}(n^{4c}, \log^2 n) \).

Proof. Let \(L \in \text{NTIME}(n^4) \) and \(\text{NTM} \ M \) decides it. Let \(L_{pad} = \{ < x, 1^{|x|-|x|} > : x \in L \} \). We claim that \(L_{pad} \in \text{NTIME}(n) \) and following is the \(\text{NTM} \ M' \) that accepts \(L_{pad} \).

(1) input \(y \).
(2) check if \(y \) is of the form of strings in \(L_{pad} \).
(3) if yes, then get \(x \) from \(y \), else reject.
(4) check if \(x \in L \) using machine \(M' \).
(5) accept if \(M' \) accepts.

Note that \(|y| = |x|^4\). Hence \(M' \) takes \(O(|x|^4) = O(|y|) \) time. So \(L_{pad} \in \text{NTIME}(n) \). Using the hypothesis, \(L_{pad} \in \text{TISP}(n^c, \log^2 n) \).

Now we claim that \(L \in \text{TISP}(n^{4c}, \log^2 n) \) and to do that we use the \(\text{TISP}(n^c, \log^2 n) \) machine for \(L_{pad} \). Here is the corresponding machine.

(1) input \(x, |x| = n \).
(2) Set \(y = < x, 1^{|x|-|x|}> \).
(3) Accept \(x \) if and only if \(y \in L_{pad} \).

Since \(|y| = n^4\) and \(L_{pad} \in \text{TISP}(n^c, \log^2 n) \), it follows that \(L \in \text{TISP}(n^{4c}, \log^2 n) \).

Proof of theorem 2. We will prove by contradiction. Assume \(\text{NTIME}(n) \subseteq \text{TISP}(n^c, \log^2 n) \). Then if \(c < \sqrt{2}, \)

\[
\text{NTIME}(n^4) \subseteq \text{TISP}(n^{4c}, \log^2 n) \\
\subseteq \text{Σ}_2\text{TIME}(n^{2c} \log n) \\
\subseteq \text{NTIME}(n^{2c} \log^c n)
\]

All of the inclusions follow directly from the above corollaries and lemmas. But this contradicts the nondeterministic time hierarchy, as for \(c < \sqrt{2}, n^{2c^2} \log^c n \in O(n^4) \). Hence proved.

This leads to the following corollary.

Corollary 2. \(SAT \notin \text{TISP}(n^{1.4}, \log n) \).

Proof. Assume otherwise, i.e., \(SAT \) can be solved in time \(n^{1.4} \) and space \(\log n \) simultaneously. Now let \(L \) be a language in \(\text{NTIME}(n) \) and it reduces to \(SAT \) via a function \(f \), i.e., \(L \leq_f SAT \). Using Cook’s reduction, we can show that \(f \) can be computed in time \(O(n \log n) \) and space \(O(\log n) \). Now consider the following algorithm for \(L \):

(1) Input \(x, |x| = n \).
(2) Compute \(f(x) = \phi, |\phi| = n \log n \).
(3) Accept if \(\phi \in SAT \).

Time to run this algorithm is \(n \log n + (n \log n)^{1.4} = O(n \log n)^{1.4} \in O(n^{1.41}) \) and the space requirement is \(\log n + \log(n \log n) = o(\log^2 n) \). Hence \(L \in \text{TISP}(n^{1.41}, \log^2 n) \), which contradicts the Theorem 2.

We can generalize Theorem 2 as follows.

Theorem 3. \(\text{NTIME}(n) \notin \text{TISP}(n^c, n^d) \), if \(c(c + d) < 2 \).

Corollary 3. \(SAT \notin \text{TISP}(n^c, n^d) \), if \(c(c + d) < 2 \).
2. Improvements to the time bounds

The previous proof works as long as $c < \sqrt{2}$. It turns out that we can improve this constant c. We will give a very high-level overview of the ideas. Suppose $s(n)$ is negligible.

Our argument had the following structure.

$$
\text{NTIME}(n) \subseteq \text{TISP}(t(n), s(n)) \text{assumption} \\
\subseteq \Sigma_2 \text{TIME}(\sqrt{t(n)}s(n)), \text{from speed-up} \\
\simeq \Sigma_2 \text{TIME}(\sqrt{t(n)})s(n) \text{ is negligible} \\
\subseteq \text{NTIME}(\sqrt{t(n)^c}), \text{from slow-down}
$$

We get a contradiction if $c \geq \sqrt{2}$. We can obtain an improvement if we can speed-up the speed-up lemma or speed-up the slowdown lemma. It seems that the bound on slow-down for is not easy to improve. But we can improve the speed-up bound easily using the power of alternations.

Consider the Σ_2 machine from the speed-up lemma. Observe that the condition “accept if $C_i \xrightarrow{t(n)/b} C_{i+1}$” is computable in time $t(n)/b$ and space $s(n)$. Instead of checking for this in time $t(n)/b$, we can again use the speed-up lemma. This will increase the number of alternations to 4 and reduce the time. By repeating this, we can obtain a Σ_{2k} machine that (approximately) runs in time $t(n)^{1/k+1}$. What happens if we apply the slow down lemma? Each application of the slow-down lemma increase time from k to k^c, and we have to apply the slow down lemma $(2k - 1)$ times. It turns out that this will not yield an improvement. However, if we can reduce the number alternations (from $2k$) of the final machine, we will get an improvement.

Consider the condition C_A is reachable from C in t steps. This can be written as follows: For every $C \neq C_A$, C is not reachable from C within t steps. This in turn can be written as follows: For every $C \neq C_A$, for every C_1, \ldots, C_{b-1}, $\exists i$ such that $C_i \rightarrow C_{i+1}$ is not reachable in $t(n)/b$ steps. Thus we can express the original condition as a $\forall \exists$-condition also. This mean that we can achieve the speed-up either with a Σ_2 machine or with a Π_2 machine. Observe that a Σ_2 computation followed by a Π_2 computation can be expressed as a Σ_3 computation. Using this idea we can bring down the number of alternations from $2k$ to k the time roughly remains that same. This improve the bound on c to the golden ratio. The best known bound on c is $2 \cos(\pi/7) \simeq 1.8$.

3. Open Questions

Open Question 1. Can you get a better bound on c, like $c \simeq 1.9$?

Open Question 2. Can you show that $\text{NTIME}(n) \not\subseteq \text{BPTISP}(n^c, \log^2 n)$?

Open Question 3. $\text{SAT} \not\in \text{TIME}(n^c)$, for $c > 1$.

Melkebeek and Raz showed that $\text{SAT} \not\in \text{TIME}(n^a)$, for $a < 1.2$. They used a 2-tape model of Turing machine where random access to the read-only input tape is allowed.

Open Question 4. $\text{SAT} \not\in \text{BPTIME}(n^a)$?
4. REFERENCES

The results presented here are due to Fortnow (JCSS 2000) and Fortnow, Lipton, van Melkebeek and Viglas (JACM 2005). The best know bound on $c \approx 1.8$ is due to Williams(STACS 2010, CCC 2005).