ChefMaster: A Glue Framework for Dynamic
Customization of Interacting Components

D Janaki Ram and Chitra Babu*

Distributed Object Systems Lab, Dept. of Computer Science & Engg.,
Indian Institute of Technology Madras,
Chennai - 600 036, India.
{djram@lotus.iitm.ernet.in,chitra@cs.iitm.ernet.in}
http://lotus.iitm.ac.in

Abstract. Component composition is becoming increasingly popular dur-
ing the past decade due to its claims of increased productivity and reduc-
tion in software development cost. Viewed from a different perspective,
composition of components could make the application flexible by provid-
ing customized responses to different client requests. Towards this objec-
tive, this paper proposes a glue framework, ChefMaster that addresses
this issue by coordinating the customization of a set of interacting com-
ponents and composing them dynamically. In this framework, the be-
havioural extensions and the composition styles are separated from the
component model, and are captured in a Connector Module(CM). CM is
a set of scripts which are written using a specific composition language.
Each script specifies the way in which the involved components should be
customized and composed together. These scripts dictate the correlation
among the customization of participating components. Since the scripts
are interpreted, ChefMaster provides a customized response, catering in-
dividually to each client request by plugging the appropriate behavioural
extensions to the group of participating components and composing them
during run-time.

Keywords: Grey box component, Behavioural extension, Composition,
Script.

1 Introduction

In recent times, the issue of component composition is gaining more im-
portance, because of the enhanced flexibility and increased productivity
associated with it in developing software applications. Components are
built in different flavors. Black-box components provide an abstraction,
where none of the component internals are visible and only the pre- and
post-conditions are specified. This has the advantage of allowing binary
composition of components[1]. Further, different programming languages
can be used for realizing the component implementations. Unfortunately,
black-box specifications are insufficient for extending the behavior of the

* The work of this author was supported in part by a fellowship from Infosys Tech-
nologies Ltd., Bangalore.

components. On the other hand, the problem with the white-box com-
ponents is that they expose too much detail to the deployers and hence
create unwanted dependencies. Further, this methodology does not help
the component developers in protecting their implementation know-how.
Hence, there must be a middle ground between these two extreme ways
of building components. A grey-box component is one, which reveals
selectively some of its internal workings. This facilitates extension of
component behavior[2, 3].

In the context of server side component architectures such as Enter-
prise Java Beans, it will be desirable, if each individual client request
could get a customized response. The integration of the glue framework
proposed in [4] with EJB, enabled the clients to customize the server
side components. However, the customization was restricted to individ-
ual components. Using this framework, it is not possible to coordinate
the behavioural extensions of a group of interacting components in a
consistent manner.

The major contribution of this paper is the proposal of an augmented
glue framework, ChefMaster, which uses a set of scripts

— to coordinate the various behavioral extensions for the interacting

components to be composed.

— to vary the styles in which the components should be composed.
The rest of the paper is organized as follows. Section 2 presents the Glue
object model briefly and also explains how it was used to achieve client-
driven customization in the context of EJB architecture. The proposed
framework ChefMaster is explained in detail in section 3. Section 4 dis-
cusses related work and Section 5 concludes the paper and outlines future
research directions.

2 Glue Customization Framework

2.1 Glue Model

The aim of the Glue object model[5] is to achieve dynamic object ada-
pation and customization, while composing the objects. The underlying
philosophy of Glue object model is to relax the tight coupling between
abstraction and encapsulation, in a systematic fashion, to achieve object-
level behavioral customization. The rationale behind this philosophy is
the observation that whenever an object needs to be used in contexts
other than the ones for which it was originally designed, breaking the
encapsulation becomes mandatory. It focuses on the need to separate
Behavioral eXtension(BeX) and Behavioral Specialization(BeS) aspects
in modeling. Glue model is based on the notion that an object exhibits
immutable and mutable behavior. A Type-hole which is an interface con-
sisting of a set of method declarations, whose definitions are deferred,
captures this mutable behavior. A base class contains the fixed behavior
and the Type-hole. A glue class is one which defines the methods declared
in a Type-hole. There can be several glue classes that provide varying
definitions for the same Type-hole. Dictated by the context, various mu-
table behaviors can be composed with the single immutable behavior.

These mutable behaviors can be dynamically plugged and unplugged,
thus enabling the behavioral extension of a single object during its life-
cycle.

The model defines four Type-hole relationships, namely, in, out, part-of
and using. Each relationship abstracts a specific kind of compositional
behavior. An in Type-hole enables messages to an object to be inter-
cepted and manipulated at the receiving object’s side. An out Type-hole
enables message interception and manipulation at the sending object’s
side. They provide incremental definition of a method. A part-of Type-
hole is used to model objects that are part of another object. The glue
object which is in part-of relationship, has access to the private data of
the base object. A using Type-hole relationship lets the base object use
the glue object without exposing any of its private data.

2.2 Client Customization in EJB

An EJB container is an environment in which Enterprise JavaBeans ex-
ecute. Its primary role is to serve as a mediator between an EJB and
clients, thus providing all the background services. The client never com-
municates directly with the bean that encapsulates the business logic.
Instead, it indirectly invokes the bean methods through its home inter-
face and its remote interface, whose implementations are automatically
provided by the container.

In EJB, the rules governing life-cycle, transactions, security and per-
sistence of the enterprise bean are defined in an associated eXtensible
Markup Language(XML) Deployment Descriptor(DD) file. These rules
are defined declaratively at deployment time rather than programmati-
cally at development time, and they tell the EJB container how to man-
age and control the bean. The container provider is responsible for enforc-
ing at run-time, the security policies and transactional attributes defined
during deployment, by providing the necessary tools. EJB provides only
this level of customization. With this, the client cannot change any server
functionality dynamically during run-time. However, allowing client side
of the application to customize the server side components will be useful,
when the the responsibilities cannot be clearly divided between the server
and client. Janaki Ram et.al.,[4] discussed how this additional level of
customization can be achieved by integrating glue framework with EJB.

Different roles played by the same bean object and the security policies
associated with each bean object are abstracted into Type-holes within
the bean class. Variety of role and security policy implementations are
abstracted as glue classes, on the client side of the application. Figure
1 depicts this.The plug and unplug methods included in the augmented
remote interface facilitate plugging of appropriate glue objects with the
basic bean object, thus enabling the customization of the bean object
at run-time. Janaki Ram et.al.,[4] discuss a detailed case study and its
implementation details.

Typehole

Typehole

Role 1 Role 2

Policy 1 Policy 2

Fig. 1. Glue Customization

3 Dynamic Customization of Interacting
Components

Although, the glue framework presented in the previous section facilitates
dynamic client-driven customization in the context of EJB architecture,
it has the following disadvantage:

— The behavioral extensions for the different bean are independent
and disconnected. It cannot capture the dependencies among the
behavioral extensions of a set of interacting bean components.

The following section describes the ChefMaster framework, whose objec-
tive is to make the server customize each client request individually, by
coordinating the customization of a group of interacting components.

3.1 ChefMaster Framework

This section presents the ChefMaster framework, where the behavioural
extensions for the set of interacting components are specified in an ex-
ternal entity called as Connector Module(CM). CM consists of a set of
methods written in a specific composition language, where new keywords
for plugging the behavioural extensions and operators for composition
styles are introduced. A preprocessor converts the composition language
code into regular scripting language code. Scripting languages will be
more suitable than conventional programming languages for implement-
ing these methods in CM, because of the flexibility offered by them. Such
flexibility in composition is possible due to the dynamic typing approach

adopted by the scripting languages. Further, since scripting languages
are interpreted, they also reduce the application turnaround time [6].
Each script uses specific operators to indicate the style in which the
participating components should be composed.

Server

Componentl Component5

ST

Client Component2
v

Request 1 / : ‘ i G ;
| L 1
Component4

Request n Componenl3

| CREC: T .G |

Legend:

---= Composition

— Injecting Typeholes and
Customizing them

@ Third party black—box
component

__" Wrapper

'

Fig. 2. ChefMaster Framework

Figure 2 pictorially represents the ChefMaster framework. The Connec-
tor Module essentially consists of a set of methods, where each method
is an independent script. The composition style for the components to
be composed, are specified in these scripts. Further, these scripts will
decide how much “encapsulation breaking” has to be done on the com-
ponents that it is intending to compose. Accordingly, the behavioural
extensions for the set of interacting components will be injected by the
scripts. However, this systematic break in encapsulation is possible only
with grey-box components. For third party black-box components which
are built outside of this framework, only the composition styles can be
varied.

Once the client issues a request, the server will dispatch the appropriate
script. The scripts will dynamically generate the glue objects that should
be plugged to the various participating components,and then compose

\ TH1 THI, . Interest Policy

Account Type

Customer Bank

Breaking the encapsulation
of the components
systematically

User
Category

Loan Policy

Connector Module
(Set of Scripts)

Coordinating the behavioual extensions
of the interacting components

Legend:

. Dynamically
Customizable Type-hole

Composition Styles

Fig. 3. Piercing Effect of Connector Module

them in the specified style. Since the scripts are interpreted, the glue
objects that should customize the specified set of components can be
varied in a consistent coordinated way so that each client request is
individually provided with a response catered to its need. The script will
decide the actual sequence of methods to be dispatched during run-time.
ChefMaster framework provides more flexibility in generating customized
response to client requests compared to the framework explained in the
earlier section, because it can coordinate the plugging of glue objects
across a set of interacting components. However, there is a penalty on
the performance, because of the overhead associated with the dynamic
method dispatch during run-time. One of the ways of improving the
performance without giving up the flexibility offered by the framework
is to componentize the script and make it inter-operate with the Java
Virtual Machine(JVM). We feel that jython[7, 8] would be suitable from
this perspective, because of its benefits of interoperability with java.
Since ChefMaster treats the script itself as a coordination component,
altering this component enables change in the coordination among the
behavioural extension of the participating components.

3.2 Example

This section illustrates the workings of ChefMaster framework by taking
a prototypical bank application.

Figure 4 shows the Graphical User Interface(GUI) screens for the sam-
ple bank application. The bank administrator might want to calculate
the interest that should be paid on the various accounts maintained by
different clients. In the provided GUI, the administrator will click on the
“Calculate Interest” button. This will provide the next level form, where
the name of the customer and the selection among the available account
types are provided. This button click gets mapped to Script 1 by the

Form 1 Form 2
Name
e

Script 1
Client
Request 1

Calculate Interest

Form 3
Client

Request Process Loan i _
= Application Script 2

Customer
alegory

Fig. 4. Mapping Client Requests to Scripts

Script 1:
[Plug(Customer.TH1, AccountTypeGlue)]. AccountInfo |

[Plug(Bank.TH1, InterestPolicyGlue)]. CalculateInterest

Script 2:

[Plug(Customer.TH2, CustomerCategoryGlue)]. CategoryInfo |

[Plug(Bank.TH2, LoanPolicyGlue)]. ProcessLoan

Fig. 5. Sample Script

server code. Figure 5 provides the script code. The selection of the ac-
count type will generate the appropriate glue components to be plugged
with “Customer” and “Bank” components. If the administrator chooses
“Checking Account”, the CheckingAccountGlue and CheckingAccount-
PolicyGlue components will be plugged to the “Customer” and “Bank”
Components respectively. Further, the operator “ |” makes the checking
account details of the customer to be passed to the Bank component,
where the plugged policy glue calculates the interest on that account and
returns the result back to the administrator. If the administrator chooses
”SavingsAccount” in a different request, SavingsAccountGlue and Sav-
ingsAccountPolicy components are plugged to “Customer” and “Bank”
components. This will return to the administrator, the calculated interest
for the amount in the savings account of the chosen customer.

If the initial request of the administrator is “Process Loan Application”,
the server will redirect the request to Script 2. Based on the chosen
customer category which can be student, farmer, employee etc., the ap-
propriate CustomerCategoryGlue and LoanPolicyGlue components will
be plugged to the “Customer” and “Bank” components. This illustrates
how the behavioural extensions for the various participating components
are plugged in a consistent and coordinated fashion, for each client re-
quest.

3.3 Enhanced Client Customization in EJB

At present, in EJB architecture, the container abstraction is static. The
static container restricts the way in which a set of interacting components
should be composed. For a given client request, the method sequence that
needs to be executed is decided at compile-time itself.

By integrating ChefMaster framework, the container itself can become
dynamic. The infrastructure services provided by the present container
will be the static non-varying part. The dynamic parts of the container
are composition styles, and behavioural extensions to components. These
will be managed by the set of scripts described in the previous sub-
section. The scripts will dynamically decide the behavioural extensions
that should be plugged to the various participating components in the
interaction and compose them at run-time. Thus, the script alters the
method dispatch sequence for each client request and provides a cus-
tomized response. The integration of ChefMaster with EJB is rather in
its preliminary stage.

4 Related Work

Truyen et.al.,[9] has discussed a dynamic customization model called,
Lasagne. In this model, distributed applications are developed as a com-
bination of some core functionality and an unbounded set of possible ex-
tensions. This model is based on the concept of wrappers. The wrapper
chain is dynamically constructed based on the composition policy speci-
fied. Though, this model has attempted to overcome some deficiencies of
wrappers discussed in [10], by introducing a notion of component identity,

it still has to deal with the complexity of wrappers underneath. Further,
it considers the extensions as self-contained. It cannot deal with grey-box
components. However, ChefMaster can systematically inject behavioural
extensions to grey-box components in a coordinated and consistent way.
Lumpe et.al.,[11,16] have designed a prototype composition language
known as Piccola. This work assumes that all the components are pure
black box entities. The composition language solely addresses the issue
of establishing connection between the required and provided services
of components. Even though it focuses on specifying connectors as first
class entities, it does not deal with dynamically dictating behavioral
extensions to the components to be composed. Our work considers all
the third party components as black box and components developed in
the native framework as grey-box. Hence, in the case of natively devel-
oped components, it is possible to dynamically extend their behavior
externally through the script. Thus, ChefMaster can coordinate the cus-
tomization of all participating components and compose them.

Hadas model[12] proposed by Ben-Shaul et al., provides a development
environment, in which components can be built and adapted during their
run-time. The application adaptability is the responsibility of a compo-
nent called ambassador. While these ambassadors are similar to CORBA
stubs in providing data marshaling and remote reference, they can be
deployed dynamically. Even though the ultimate aim of Hadas matches
the objective of our framework, Hadas uses mutable reflective component
model, which uses the built-in meta-methods of the component to change
its behavior. In contrast to this, in our framework, this functionality is
externalized as connector module. Another shortcoming of Hadas is the
loss of programming transparency because it significantly deviates from
the conventional programming models. On the other hand, ChefMaster
does not intend to replace CORBA, .NET or EJB, but provides a way
of composing components built in these different frameworks.

Context relations[13] proposed by Linda Seiter et al., uses a context
object in dynamically modifying the base object or set of base objects
involved in a given collaboration. However, the same context has to travel
along the entire collaboration. Whereas in ChefMaster framework, the
number of Type-holes customized for the set of interacting components
can be controlled and altered from the script, for each independent client
request.

Contracts[14] explicitly capture the behavioral composition of a set of
communicating objects. A contract defines preconditions required on par-
ticipating objects to establish the contract, and the invariant to be main-
tained by these participants. Even though ChefMaster also addresses the
behavioural composition of interacting components, it has the additional
capability of dealing with grey-box components by systematically break-
ing their encapsulation. Further, contracts do not deal with customizing
client requests, which is the major focus of ChefMaster.

5 Conclusions and Future Work

This paper proposed an augmented glue framework, ChefMaster, which
provides individually catered response to different client requests, through

a set of scripts. These scripts dynamically coordinate the behavioral ex-
tensions for a set of components involved in that interaction and com-
pose them at run-time. Since the script is interpreted, it offers increased
flexibility in gluing the components in different ways, thus enabling cus-
tomized response to client requests.

Currently, the ChefMaster framework has been implemented for a proto-
typical application. We intend to illustrate the power of the framework
with a more complex example, which will clearly justify the need for dy-
namic coordination among interacting components. Our future plan also
focuses on providing a formal description of the connector semantics.
m-calculus[15] provides channel, an identity based on the unique sender
and receiver. The possibility of giving first class status to methods based
on the identities of sender and receiver is presently under scrutiny.

References

1. R. Wuyts and S. Ducasse. Composition languages for black-box com-
ponents. In Proceedings of the First OOPSLA workshop on Language
Mechanism for Programming Components, 2001.

2. M. Buchi and W. Weck. A plea for grey-box components. Technical
Report 122, Turku Centre for Computer Science, Turku, Finland,
1997.

3. C. Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1999.

4. D. Janaki Ram and Chitra Babu. A framework for dynamic client-
driven customization. In Proceedings of International Conference on
Object-oriented Information Systems, pages 245-258, University of
Calgary, Canada, 2001.

5. D. Janaki Ram and O. Ramakrishna. The glue model for reuse
by customization in object-oriented systems. Technical Report
IITM-CSE-DOS-98-02, Indian Institute of Technology, Madras, In-
dia, 1998.

6. J. K. Ousterhout. Scripting: Higher level programming for the 21st
century. IEEE Computer, 31(3):23-30, March 1998.

7. G. V. Rossum. Python. In S. Zamir, editor, Handbook of object
technology. The CRC Press, 1999.

8. Jim Hugunin. Python and java: The best of both worlds. In Pro-
ceedings of the 6th International Python Conference, 1997.

9. E. Truyen and et.al.,. Dynamic and selective combination of exten-
sions in component-based applications. In Proceedings of the 23rd
International Conference on Software Engineering, 2001.

10. U. Holzle. Integrating independently developed components in
object-oriented languages. In Proceedings of the ECOOP 93, pages
36-56, 1993.

11. M. Lumpe and J. G. Schneider and O. Nierstrasz and F. Achermann.
Towards a formal composition language. In Proceedings of the ESEC
97 workshop on foundations of component-based systems, pages 178—
187, September 1997.

12.

13.

14.

15.

16.

I. Ben-Shaul, O. Holder, and B. Lavva. Dynamic adaptation and
deployment of distributed components in hadas. IEEE Transactions
on Software Engineering, 27(9):769-787, September 2001.

L.M. Seiter and K.J. Lieberherr. Evolution of object behavior us-
ing context relations. IEEE Transactions on Software Engineering,
24(1):79-92, January 1998.

R. Helm, I.M. Holland, and D. Gangopadhyay. Contracts: Specifying
behavioral composition in object-oriented systems. In Proceedings
of the Fifth ACM Conference on Object-Oriented Programming Sys-
tems, Languages and Applications(OOPSLA), pages 169-180, Octo-
ber 1990.

Davide Sangiorgi and David walker. The w-lalculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

M. Lumpe. A w-calculus based approach for software composition.
Ph.D thesis. University of Berne, Switzerland, 1999.

