Communicating and Mobile Systems

Overview:
- Programming Model
- Interactive Behavior
- Labeled Transition System
- Bisimulation
- The \(\pi \)-Calculus
- Data Structures and \(\lambda \)-Calculus encoding in the \(\pi \)-Calculus

References:
- Gerald K. Ostheimer and Antony J. T. Davie, “\(\pi \)-Calculus Characterizations of some Practical \(\lambda \)-Calculus Reduction Strategies”, Department of Mathematical and Computing Science, University of St. Andrews, CS/93/14, 1993
Communication is a fundamental and integral part of computing, whether between different computers on a network, or between components within a single computer.

Robin Milner’s view: Programs are built from communicating parts, rather than adding communication as an extra level of activity.

Programs proceed by means of communication.
Evolving Automata – Static System

Static System

A

B

C

D
Evolving Automata – Deleted Note

Deleted Note

Connected nodes A, B, C, D.
Evolving Automata – Divided Node

Divided Node

D1

D2

A

B

C

Com S 541
Evolving Automata – Moved Link

Moved Link

- A
- B
- C
- D

Com S 541
Starting point: The components of a system are interacting automata.

An automaton is a quintuple \(A = (\Sigma, Q, q_0, \sigma, F) \) with:

- a set \(\Sigma \) of actions (sometimes called an alphabet),
- a set \(Q = \{q_0, q_1, \ldots\} \) of states,
- a subset \(F \) of \(Q \) called the accepting states,
- a subset \(\sigma \) of \(Q \times A \times Q \) called the transitions,
- a designated start state \(q_0 \).

A transition \((q, a, q') \in \sigma\) is usually written \(q \xrightarrow{a} q' \).

The automaton \(A \) is said to be finite if \(Q \) is finite.
An automaton is deterministic if for each pair \((q, \alpha) \in Q \times \Sigma\) there is exactly one transition \(q \xrightarrow{\alpha} q'\).

deterministic automata:

non-deterministic automata:
A tea/coffee vending machine is implemented as black box with a three-symbol alphabet \{\$1, \text{tea}, \text{coffee}\}.

\[\text{Black Box Corporation} \]
Internal Transition Diagrams

Deterministic system S_1:

Non-deterministic system S_2:

Are both systems equivalent?
S1 = S2?

S1:

\[q_0 = \$1 \cdot q_1 + \varepsilon \]
\[q_1 = \text{tea} \cdot q_0 + \$1 \cdot q_2 \]
\[q_2 = \text{coffee} \cdot q_0 \]
\[q_1 = \text{tea} \cdot q_0 + \$1 \cdot \text{coffee} \cdot q_0 \]
\[q_0 = \$1 \cdot (\text{tea} \cdot q_0 + \$1 \cdot \text{coffee} \cdot q_0) + \varepsilon \]
\[q_0 = \$1 \cdot (\text{tea} + \$1 \cdot \text{coffee}) \cdot q_0 + \varepsilon \]
\[q_0 = (\$1 \cdot (\text{tea} + \$1 \cdot \text{coffee}))^* \]

S2:

\[q_0 = \$1 \cdot q_1 + \$1 \cdot q_2 + \varepsilon \]
\[q_1 = \text{tea} \cdot q_0 \]
\[q_2 = \$1 \cdot q_3 \]
\[q_3 = \text{coffee} \cdot q_0 \]
\[q_2 = \$1 \cdot \text{coffee} \cdot q_0 \]
\[q_0 = \$1 \cdot \text{tea} \cdot q_0 + \$1 \cdot \$1 \cdot \text{coffee} \cdot q_0 + \varepsilon \]
\[q_0 = \$1 \cdot (\text{tea} \cdot q_0 + \$1 \cdot \text{coffee} \cdot q_0) + \varepsilon \]
\[q_0 = \$1 \cdot (\text{tea} + \$1 \cdot \text{coffee}) \cdot q_0 + \varepsilon \]
\[q_0 = (\$1 \cdot (\text{tea} + \$1 \cdot \text{coffee}))^* \]

The systems S1 and S2 are language-equivalent, but the *observable behavior* is not the same.
Language-equivalence is not suitable for all purposes. If we are interested in interactive behavior, then a non-deterministic automaton cannot correctly be equated behaviorally with a deterministic one.

A different theory is required!
A labeled transition system over actions Act is a pair \((Q, T)\) consisting of:

- a set \(Q = \{q_0, q_1, \ldots\}\) of states,
- a ternary relation \(T \subseteq (Q \times \text{Act} \times Q)\), known as a transition relation.

If \((q, \alpha, q') \in T\) we write \(q \xrightarrow{\alpha} q'\), and we call \(q\) the source and \(q'\) the target of the transition.
Important conceptual changes:

- What matters about a string s - a sequence of actions - is not whether it drives the automaton into an accepting state (since we cannot detect this by interaction) but whether the automaton is able to perform the sequence of s interactively.

- A labeled transition system can be thought of as an automaton without a start or accepting states.

- Any state can be considered as the start.

Actions consist of a set \mathcal{L} of labels and a set $\overline{\mathcal{L}}$ of co-labels with $\overline{\mathcal{L}} = \{ \overline{a} \mid a \in \mathcal{L} \}$. We use α, β, \ldots to range over actions Act.
In 1981 D. Park proposed a new approach to define the equivalence of automata - bisimulation.

Given a labeled transition system there exists a standard definition of bisimulation equivalence that can be applied to this labeled transition system.

The definition of bisimulation is given in a coinductive style that is, two systems are bisimular if we cannot show that they are not.

Informally, to say a ‘system S1 simulates system S2’ means that S1’s observable behavior is at least as rich as that of S2.
Strong Simulation - Definition

Definition:

Let \((Q, T)\) be an labeled transition system, and let \(S\) be a binary relation over \(Q\). Then \(S\) is called a strong simulation over \((Q, T)\) if, whenever \(pSq\),

if \(p \xrightarrow{\alpha} p'\) then there exists \(q' \in Q\) such that \(q \xrightarrow{\alpha} q'\) and \(p'Sq'\).

We say that \(q\) strongly simulates \(p\) if there exists a strong simulation \(S\) such that \(pSq\).
Strong Simulation - Example

The states q0 and p0 are different. Therefore, the systems S1 and S2 are not considered to be equivalent.
Define \(S \) by

\[
S = \{(p0, q0), (p1, q1), (p3, q1), (p2, q4), (p4, q2), (p5, q3)\}
\]

then \(S \) is a strong simulation; hence \(q0 \) strongly simulates \(p0 \).

- To verify this, for every pair \((p, q) \in S \) we have to consider each transition of \(p \), and show that it is properly matched by some transition of \(q \).

- However, there exists no strong simulation \(R \) that contains the pair \((q1, p1) \), because one of \(q1 \)'s transition could never be matched by \(p1 \). Therefore, the states \(q0 \) and \(p0 \) are different, and the systems \(S1 \) and \(S2 \) are not considered to be equivalent.
Strong Bisimulation

Definition:
The converse R^{-1} of any binary relation R is the set of pairs (y, x) such that $(x, y) \in R$.

Let (Q, T) be an labeled transition system, and let S be a binary relation over Q. Then S is called a strong bisimulation over (Q, T) if both S and its converse S^{-1} are strong simulations. We say that p and q are strongly bisimular or strongly equivalent, written $p \sim q$, if there exists a strong bisimulation S such that pSq.
Checking Bisimulation

S1:

```
  p0  a  p1  b  p2
  a
  p3  c  p4
```

S2:

```
  q0  a  q1
  b  q2
  q3  c
```

S1 ~ S2?

To construct S start with (p0, q0) and check whether S2 can match all transitions of S1:

\[S = \{ (p0, q0), (p1, q1), (p3, q1), (p2, q2), (p4, q3) \} \]

System S2 can simulate system S1. Now check, whether \(S^{-1} \) is a simulation or not:

\[S^{-1} = \{ (q0, p0), (q1, p1), (q1, p3), (q2, p2), (q3, p4) \} \]

Start with \((q0, p0) \in S^{-1} \).

1: q0 has one transition ‘a’ that can be matched by two transitions of S1 (target p1 and p3, respectively) and we have \((q1, p1) \in S^{-1} \) and \((q1, p3) \in S^{-1} \).

2: q1 has two transitions ‘b’ and ‘c’, which, however, cannot appropriately be matched by the related states p1 and p3 of system S1 (p1 has only a ‘b’ transition whilst p3 has only a ‘c’ transition).

We have, therefore, \(S1 \not\sim S2 \).
Some Facts on Bisimulations

- is an equivalence relation.

- If S_i, $i=1,2,...$ is a family of strong bisimulations, then the following relations are also strong bisimulations:

 - Id_P

 - $S_1 \circ S_2 = \{(P,R) \mid \text{for some } Q \text{ with } (P,Q) \in S_1, (Q,R) \in S_2\}$

 - S_i^{-1}

 - $\bigcup_{i \in I} S_i$
Some Facts on Bisimulations II

\[S_1 \circ S_2 = \{ (P, R) \mid \text{for some } Q \text{ with } (P, Q) \in S_1, (Q, R) \in S_2 \} \]

Proof:

Let \((P, R) \in S_1 \circ S_2\). Then there exists a \(Q\) with \((P, Q) \in S_1\) and \((Q, R) \in S_2\).

\((\rightarrow)\) If \(P \xrightarrow{\alpha} P'\), then since \((P, Q) \in S_1\) there exists \(Q'\) and \(Q \xrightarrow{\alpha} Q'\) and \((P', Q') \in S_1\). Furthermore, since \((Q, R) \in S_2\) there exists a \(R'\) with \(R \xrightarrow{\alpha} R'\) and \((Q', R') \in S_2\). Due to the definition of \(S_1 \circ S_2\) it holds that \((P', R') \in S_1 \circ S_2\) as required.

\((\leftarrow)\) Similar to \((\rightarrow)\).
Bisimulation is an equivalence relation defined over a labeled transition system which respects non-determinism. The bisimulation technique can therefore be used to compare the observable behavior of interacting systems.

Note: Strong bisimulation does not cover unobservable behavior which is present in systems that have operators to define reaction (i.e., internal actions).
The π-calculus

- The π-calculus is a model of concurrent computation based upon the notion of *naming*.

- The π-calculus is a calculus in which the topology of communication can evolve dynamically during evaluation.

- In the π-calculus communication links are identified by *names*, and computation is represented purely as the communication of names across links.

- The π-calculus is an extension of the process algebra CCS, following the work by Engberg and Nielsen who added mobility to CCS while preserving its algebraic properties.

- The most popular versions of the π-calculus are the monadic π-calculus, the polyadic π-calculus, and the simplified polyadic π-calculus.
The π-calculus - Basic Ideas

- The most primitive in the π-calculus is a *name*, Names, infinitely many, are $x, y, \ldots \in \mathbb{N}$; they have no structure.

- In the π-calculus we only have one other kind of entity: a *process*. We use P, Q, \ldots to range over processes.

- Polyadic prefixes:
 - Input prefix: $x \langle \tilde{y} \rangle$

 “input some names y_1, \ldots, y_n along the link named x”

 - output prefix: $\overline{x} \langle \tilde{y} \rangle$

 “output the names y_1, \ldots, y_n along the link named x”

Com S 541
The π-calculus - Syntax

Note: We only consider the simplified polyadic version.

$P, Q ::=$ P, P

Parallel composition

$(\nu x) P$

Restriction

$x(y_1, ..., y_n) P$

Input

$\langle y_1, ..., y_n \rangle P$

Output

\overline{P}

Replication (input-only)

0

Null

Com S 541
Reduction Semantics

Robin Milner proposed first a reduction semantics technique. Using the reduction semantics technique allows us to separate the laws which govern the neighborhood relation among processes from the rules that specify their interaction.

\[
\begin{align*}
P &\equiv P' & P' &\rightarrow Q & Q &\equiv Q' & P &\rightarrow Q \\
\langle P \mid Q \rangle &\equiv R & R &\equiv P & \langle Q \mid R \rangle \\
(\forall x)P &\equiv (\forall x)\langle P \mid Q \rangle, x \notin \text{fn} Q
\end{align*}
\]

\[
\begin{align*}
Q &\rightarrow R & P \equiv P' \\
\overline{Q} &\rightarrow R & P' &\rightarrow Q & Q &\equiv Q' \\
\overline{Q} &\rightarrow R & P &\rightarrow Q & (\forall x)P &\rightarrow (\forall x)Q
\end{align*}
\]

\[
x(y_1, \ldots, y_n)P \overline{\langle z_1, \ldots, z_n \rangle} \rightarrow P\{y_1, \ldots, y_n \setminus z_1, \ldots, z_n\}
\]
\(\overline{x}(y) \ x \ (u) \overline{u}(v) \ \overline{x}(z) \) can evolve to \(\overline{y}(v) \ \overline{x}(z) \) or \(\overline{x}(y) \ \overline{z}(v) \)

\((v \ x) (\overline{x}(y) \ x \ (u) \overline{u}(v)) \ \overline{x}(z) \) can evolve to \(\overline{y}(v) \ \overline{x}(z) \)

\(\overline{x}(y) \ \lnot(x \ (u) \overline{u}(v)) \ \overline{x}(z) \) can evolve to

\(\overline{y}(v) \ |\lnot(x \ (u) \overline{u}(v)) \ |\overline{x}(z) \) or \(\overline{x}(y) \ |\lnot(x \ (u) \overline{u}(v)) \ |\overline{z}(v) \)

and

\(\overline{y}(v) \ |\lnot(x \ (u) \overline{u}(v)) \ |\overline{z}(v) \)
Church’s Encoding of Booleans

- The boolean values `True` and `False` are encoded as processes waiting at channel `b` for a pair `(t, f)` that represent the corresponding continuations. Similarly, the function `Not` is implemented as a process waiting at channel `b` for a boolean value and sends along channel `c` the negated boolean value.

 \[
 \begin{align*}
 \text{True}(b) & \equiv b(t, f)^{t} \\
 \text{False}(b) & \equiv b(t, f)^{f} \\
 \text{Not}(b, c) & \equiv b(t, f)c(f, t)
 \end{align*}
 \]

? \[
\begin{align*}
(\nu c) (\text{Not}(b, c) \text{True}(c)) &= \text{False}(b) \\
(\nu c) b(t, f)c(f, t) | c(t, f)^{t} &= b(t, f)^{f}
\end{align*}
\]
Actions

\(\alpha(\tilde{b}) \) Input action; \(\alpha \) is the name at which it occurs, \(\tilde{b} \) is the tuple of names which are received

\(\bar{\alpha}(\tilde{b}) \) Output action; \(\alpha \) is the name at which it occurs, \(\tilde{b} \) is the tuple of names which are emitted

\((\nu \tilde{x})\alpha(\tilde{b}) \) Restricted output action; \(\alpha \) is the name at which it occurs, \(\tilde{b} \) is the tuple of names which are emitted; \((\nu \tilde{x}) \) denotes private names which are carried out from their current scope (scope extrusion)

\(\tau \) Silent action; this action denotes unobservable internal communication.
Labeled Transition Semantics

IN: \(a(\tilde{x}) P \xrightarrow{a(\tilde{b})} P\{\tilde{x} \backslash \tilde{b}\} \)

OUT: \(\overline{a}(\tilde{b}) \times (\tilde{b}) \rightarrow 0 \)

OPEN:
\[\begin{align*}
P \xrightarrow{\psi \tilde{x} a(\tilde{b})} P' & \quad y \neq a \quad y \in \tilde{b} - \tilde{x} \\
\psi y P \xrightarrow{\psi y \tilde{x} a(\tilde{b})} P' & \\
\end{align*}\]

COM:
\[\begin{align*}
P \xrightarrow{\tilde{a}(\tilde{b})} P' & \quad Q \xrightarrow{a(\tilde{b})} Q' \\
\end{align*}\]

CLOSE:
\[\begin{align*}
P \xrightarrow{\psi \tilde{x} a(\tilde{b})} P' & \quad Q \xrightarrow{a(\tilde{b})} Q' \quad \tilde{x} \notin \text{fin}(Q) \\
\end{align*}\]

RES:
\[\begin{align*}
P \xrightarrow{\alpha} P' & \quad x \notin \alpha(n(Q)) \\
\psi x P \xrightarrow{\alpha} (\psi x) (P' | Q') & \\
\end{align*}\]

PAR:
\[\begin{align*}
P \xrightarrow{\alpha} P' & \quad \text{bn}(\alpha) \cap \text{fin}(Q) = \emptyset \\
\end{align*}\]

REPL:
\[\begin{align*}
a(x) P \xrightarrow{a(\tilde{b})} P\{\tilde{x} \backslash \tilde{b}\} & \quad !a(x) P \xrightarrow{a(\tilde{b})} P\{\tilde{x} \backslash \tilde{b}\} | !a(x) P \\
\end{align*}\]
Some Facts

The side conditions in the transition rules ensure that names do not become accidentally bound or captured. In the rule RES the side condition prevents transitions like

\[(\nu \ x)a \ (b) \ P \xrightarrow{a \ | \ x} \ (\nu \ x)P \{b \ \backslash x\}\]

which would violate the static binding assumed for restriction.

In the given system bound names of an input are instantiated as soon as possible, namely in the rule for input - it is therefore an *early* transition system. Late instantiation is done in the rule for communication.

The given system implements an asynchronous variant of the π-calculus. Therefore, output action are not directly observable.

There is no rule for α-conversion. It is assumed that α-conversion is always possible.
Experiments

\[\forall c \left(\neg \text{Not} \ b, c \right) \rightarrow \text{True} (c) = \text{False} \ b \]

\[\forall c \ b (t' f') \bar{c}(f't) \left| c(t', f')\bar{t}' \right) = b (t', f')\bar{f} \]

Experiment 1:

\[\forall c \ b(x, y) (y, x) \rightarrow \bar{c}(y, x) \left| c(t', f')\bar{t}' \right) \]

\[\tau \rightarrow \bar{y} \]

\[y \rightarrow 0 \]

Experiment 2:

\[b(t', f')\bar{f} \]

\[\bar{b}(x, y) \rightarrow \bar{y} \]

\[y \rightarrow 0 \]

Note, using strong bisimulation, the systems are not equivalent. We have an internal action in the left system, which cannot be matched by the right system. Furthermore, an asynchronous observer can only indirectly see that an output message has been consumed.
The central idea of bisimulation is that an external observer performs experiments with both processes P and Q observing the results in turn in order to match each others process behavior step-by-step.

Checking the equivalence of processes this way one can think of this as a game played between two persons, the **unbeliever**, who thinks that P and Q are not equivalent, and the **believer**, who thinks that P and Q are equivalent. The underlying strategy of this game is that the unbeliever is trying to perform a process transition which cannot be matched by the believer.
There exists two kinds of experiments to check process equivalence: *input-experiments* and *output-experiments*. Both experiments are triggered by their corresponding opposite action.

In the synchronous case, input actions for a process P are only generated if there exists a matching receiver that is enabled within P. The existence of an input transition such that P evolves to P' reflects precisely the fact that a message offered by the observer has actually been consumed.
Asynchronous Interactions

In an synchronous system the sender of an output message does not know when the message is actually consumed. In other words, at the time of consumption of the message, its sender is not participating in the event anymore. Therefore, an asynchronous observer, in contrast to a synchronous one, cannot directly detect the input actions of the observed process. We need therefore a different notion of input-experiment.

Solution: Asynchronous input-experiments are incorporated into the definition of bisimulation such that inputs of processes have to be simulated only indirectly by observing the output behavior of the process in context of arbitrary messages (e.g., $P \xrightarrow{a} (b)$).
The Silent Action

- Strong bisimulation does not respect silent actions (τ-transitions).

- Silent transitions denote unobservable internal communication. From the observer’s point of view we can only notice that the system takes more time to respond.

- Silent actions do not denote any interacting behavior. Therefore, we may consider two systems P and Q to be equivalent if they only differ in the number of internal communications.

- We write $P \xrightarrow{\alpha} P'$ if $P \xrightarrow{\tau \ast} \alpha \xrightarrow{\tau \ast} P'$. In other words, a given observable action can have an arbitrary number of preceding or following internal communications.
Asynchronous Bisimulation

A binary relation S over processes P and Q is a weak (observable) bisimulation if it is symmetric and $P S Q$ implies

- whenever $P \xrightarrow{\alpha} P$, where α is either τ or output with $\text{bn}(\alpha) \cap \text{fn}(P \uplus Q) = \emptyset$, then Q' exists such that $Q \xrightarrow{\alpha} Q'$ and $P \uplus S Q'$.

- $(P \mid \overline{a}\langle b \rangle) S (Q \mid \overline{a}\langle b \rangle)$ for all messages $\overline{a}\langle b \rangle$.

Two processes P and Q are weakly bisimular, written $P \approx Q$, if there is a weak bisimulation S with $P S Q$.
Some Facts

- \approx is an equivalence relation.

- \approx is a congruence relation.

- Leading τ-transitions are significant, that is, they cannot be omitted.

- Asynchronous bisimulation is the framework that enables us to state $P = Q$ if and only if $P \approx Q$ and vice versa.
ReferenceCell ≡ (ν v, s, g)
(\text{ref}_0)
|!s(n, r) . v(_).\text{ref}_n | \text{ref}_n \rangle \rangle
|!g(r) . v(i).\text{ref}_i | \text{ref}_i \rangle \rangle
A list is either *Nil* or *Cons* of value and a list.

The constant *Nil*, the construction *Cons(V, L)*, and a list of *n* values are defined as follows:

\[
\begin{align*}
\text{Nil} & = h(n,c)\bar{n} \\
\text{Cons}(V, L) & = \psi(v, l) h(n,c)\bar{c}(v, l) |V(v)\rangle |L(l)\rangle \\
[V_1, \ldots, V_n] & = \text{Cons}(V_1, \text{Cons}(...\text{Cons}(V_n, \text{Nil})...))
\end{align*}
\]
Encoding λ-terms With Call-by-value Reduction

- If the λ-term is just a variable, then we return immediately the value of this variable along channel p.

- If the λ-term is a λ-abstraction, we first create a new channel f, which we can think of as the location of $\lambda x.e$. We immediately return f along channel p and start a replicated process that represents the λ-abstraction.

- If the λ-term is an application, we evaluate it left-to-right. We evaluate both sub-expressions, before we evaluate the whole term.

\[
\begin{align*}
&[x]_p = \overline{p}\langle x \rangle \\
&[\lambda x.e]_p = \psi f \overline{p}\langle f \rangle |!f(x,q)_q . [e]_q) \\
&[e\ e]_p = \psi q \psi r ([e]_q |q(f) . [e]_q |r(x) f(x,p)))
\end{align*}
\]
Parallel Encoding of a λ-application

- We can evaluate an application in parallel. We start the evaluation of e an e' and synchronize the results with a third process.

\[
\langle p \rangle = \langle q \rangle \langle r \rangle (\langle e \rangle \langle e \rangle | q(f) r(x) \tilde{f}(x, p))
\]
The encoding of both a variable and a λ-abstraction is the same as in the case of call-by-value reduction.

If the λ-term is an application, we start with e, which denotes the function. In contrast to the call-by-value encoding, we do not start the evaluation of e'. Instead, we start a replicated process waiting on channel x and apply f to the argument x and the result channel p. If f actually needs the associated value of x, it has to communicate with the replicated process located at x.

\[
\begin{align*}
[x]_p &= \bar{p} \langle x \rangle \\
[\lambda x. e]_p &= \langle \psi f \rangle \bar{p} \langle f \rangle | \text{if}(x,q). [e]_q \rangle \\
[e_1 e_2]_p &= \langle \psi q \rangle \langle \psi x \rangle | q(f). (\text{if}(x,p) | \text{lx}(c). [e]_c) \rangle
\end{align*}
\]
A Concurrent Language

\[V ::= X \mid Y \mid \ldots \]
\[F ::= + \mid - \mid \ldots \mid 0 \mid 1 \mid \ldots \]
\[C ::= V = E \]
\[C ; C \]
\[\text{if} E \text{ then } C \text{ else } C \]
\[\text{while} E \text{ do } C \]
\[\text{let} D \text{ in } C \text{ end} \]
\[C \text{ par } C \]
\[\text{input} V \]
\[\text{output} E \]
\[\text{skip} \]
\[D ::= \text{var} V \]
\[E ::= V \]
\[F (E_1, \ldots, E_n) \]

Variable
Function symbols
Assignment
Sequential Composition
Conditional Statement
While Statement
Declaration
Parallel Composition
Input
Output
Variable Declaration
Variable Expression
Function Call

Com S 541
Ambiguous Meaning

X = 0;
X = X + 1 par X = X + 2

What is the value of X at the end of the second statement?
Basic Elements

We assume that each element of the source language is assigned a process expression:

- Variables: $X \text{ (init)} = \forall \nu, \text{setX}, \text{getX} \quad (\nu \text{ (init)})$

 $\nu (\text{init})$

 $|!\text{setX} (n, r) \cdot \nu (_). (\nu (n) \mid \nu \text{ (done)})$

 $|!\text{getX} (r) \cdot \nu (i). (\nu (i) \mid \nu \text{ (done)})$

- Skip: $\text{done}\rangle$

- $C_1 ; C_2 =$ $\forall c \exists C_1 \{ \text{done} \}; C_2$

- $C_1 \text{ par } C_2 =$ $\forall i, r, t \exists C_1 \{ \text{done} \}; C_2 \{ \text{done} \}$

 $(l() \cdot t(b) \cdot (\text{if } b \text{ then } r()); \text{Skip else } \nu \text{ (done)}) \mid$

 $(r() \cdot t(b) \cdot (\text{if } b \text{ then } l()); \text{Skip else } \nu \text{ (done)})$

Com S 541
Expressions

\[X = (\forall \text{ ack}) \overline{(\text{getX (ack)} | \text{ack (v)} \overline{\text{res (v)})}} \]

\[F (E_1, \ldots, E_n) = \overline{\text{arg}_1 (x_1) \ldots \overline{\text{arg}_n (x_n)}} F (x_1, \ldots, x_n, \text{res}) \]

\[M [F (E_1, \ldots, E_n)] = (\forall \overline{\text{arg}_1, \ldots, \overline{\text{arg}_n}}) M [E_1]{\text{res}\backslash \text{arg}_1} | \ldots | M [E_n]{\text{res}\backslash \text{arg}_n} | M [F] \]
Operation Sequence

\[X = 0; \]
\[X = X + 1 \text{ par } X = X + 2 \]

- What is the value of \(X \) at the end of the second statement?

- According to the former definitions the value of \(X \) is either 1, 2, or 3. The three values are possible since every atomic action can occur in an arbitrary and meshed order.

- To guarantee a specific result (e.g., 1 or 2), we need to employ semaphors.
What Have We Learned?

- Classical automata theory does not cope correctly with interacting behavior.

- Bisimulation is an equivalence relation defined over a labeled transition system which respects non-determinism and can therefore be used to compare the observable behavior of interacting systems.

- The π-calculus is a name-passing system in which program progress is expressed by communication.

- With the π-calculus we can model higher-level programming abstractions like objects and lists.

- A concurrent programming language can be assigned a semantics based on the π-calculus.