Concurrent Processes & Petri Nets

Problem 1

An intersection is controlled by traffic lights (that is, red, yellow, and green). Each road is handled by one sub-system. Model the traffic lights controller as a Petri net. The light sequence should be red-yellow-green-yellow-red. The controller must guarantee that in no case cars on both roads can drive.

Specify the set P, the set T, the set I, the set O, and the initial marking μ.

Problem 2

Consider the following non-persistent encoding of Booleans:

\[
\begin{align*}
T &= \text{true}.0 + \text{not}.F \\
F &= \text{false}.0 + \text{not}.T
\end{align*}
\]

Define processes AND, OR, NAND, XOR, and NOR that interact with two Booleans and yield a new Boolean that denotes the result of the operation. Note that you cannot use short-circuit evaluation.

Problem 3

Define a 3-bit-Integer $I^3(b_0, b_1, b_2)$ using process equations. The names b_0, b_1, and b_2 denote bits. If a bit is set then the corresponding name appears as $\overline{b_i}$ in the process equation.

Submission deadline: Thursday, March 4, 2004, 12:40 p.m.