Naive Bayes Classifier

Bayesian recipe for classification

• The Bayesian recipe is simple, optimal, and in principle, straightforward to apply

• We could design an optimal classifier if we knew:
 • $P(\omega)$ (priors)
 • $p(x | \omega)$ (class-conditional densities)

• We have some knowledge and training data (x_i, ω_i)

• Use the samples to estimate the unknown probability distributions

• x is typically high-dimensional

• Need to estimate $P(x | \omega)$ from limited data
Naive Bayes Classifier

- Along with decision trees, neural networks, nearest neighbor, one of the most practical learning methods.
- Categories \{\omega_1, \omega_2, \ldots, \omega_c\},
- Feature/attribute vector \(\mathbf{x} = [x_1, x_2, \ldots, x_d]^T \)
- Naive Bayes assumption:
 \[
P(x_1, \ldots, x_d | \omega_j) = \prod_i P(x_i | \omega_j)
 \]
- Naive Bayes classifier:
 \[
 \omega_{NB} = \arg \max_{\omega_j} P(\omega_j) \prod_i P(x_i | \omega_j)
 \]
- Performs optimally under certain assumptions

Naive Bayes Classifier

- Given training data set \(D\)
- Need to estimate probabilistic parameters, no need for complicated training process as in neural networks
- Estimate \(P(\omega_j) = n_j/n\) (Maximum Likelihood estimation)
- Estimate \(P(x_i = a_{ik} | \omega_j)\)
 - ML Estimation \(N_{ik}/n_j\) – discrete feature
Consider PlayTennis problem, and new instance
<Outlk=sun, Temp=cool, Humid=high, Wind=strong>

We estimate parameters
\[P(\text{yes}) = 9/14, \quad P(\text{no}) = 5/14 \]
\[P(\text{Wind=strong}|\text{yes}) = 3/9 \]
\[P(\text{Wind=strong}|\text{no}) = 3/5 \]
...

We have
\[P(y) P(\text{sun}|y) P(\text{cool}|y) P(\text{highly}) P(\text{strongly}) = .005 \]
\[P(n) P(\text{sun}|n) P(\text{cool}|n) P(\text{highly}) P(\text{strongly}) = .021 \]

Therefore this new instance is classified to “no”
Estimation of Probabilities from Small Samples

• Estimate $P(x_i=a_{ik} \mid \omega_j)$ – discrete feature
 • ML Estimation N_{jik}/n_j
 • Poor estimates when n_j is small
 • What if none of the training instances with category ω_j have feature value $x_i=a_{ik}$? $P(x_i=a_{ik} \mid \omega_j) = 0$, which lead to $P(\omega_j \mid \ldots, x_i=a_{ik}, \ldots)=0$
 • Typical solution is Bayesian estimate

• Bayesian estimates for estimating $\theta_k = P(X_i=k)$ from data set D_j

$$P(X_i = k \mid D_j) = \frac{N_{jik} + Mp_k}{n_j + M}$$

• Laplace estimates: $M=|Dm(X)|$, $Mp_k=1$
• M: imaginary equivalent sample size
• p_k: prior belief about θ_k, summation to 1
• The larger the equivalent sample size M, the more confident we are in our prior
• Estimate density $p(x|\omega_j)$ – continuous feature
 • Assume e.g. Gaussian distribution $N(\mu, \sigma^2)$, then estimate μ, σ, or

• Discretize into $\{1, ..., k\}$
 • Equal-width interval: $Width = (x_{max} - x_{min})/k$
 • Convert x to i if x is in ith interval

Naive Bayes Classifier

• Conditional independence assumption is often violated

• But it works surprisingly well anyway (Domingos and Pazzani, 1997)

• Successful applications:
 • Diagnosis
 • Learn which news articles are of interest.
 • Learn to classify web pages by topic.
 • Learn to assign proteins to functional families

• Performance often comparable to that of neural networks, decision tree, etc.
Learning to Classify Text

• Learn which news articles are of interest

• Target concept \textit{Interesting}? : Documents $\rightarrow \{+,-\}$

• Learning: Use training examples to estimate
 \[P(+) , P(-) , P(doc | +) , P(doc | -) \]

• What attributes shall we use to represent text documents?

Text Representation

• Represent each document by vector of words
 • one attribute per word position in document
 \[P(doc | \omega_j) = P(length(doc | \omega_j) \prod_{i=1}^{\|doc\|} P(X_i = w_k | \omega_j) \]

• We need a probability for each word occurrence in each position in the document: \(2 \times length \times |\text{vocabulary}|\)
 • Too many probabilities to estimate!
 • Limited samples
Binary Independence Model

- Given a vocabulary V: $(w_1, \ldots, w_{|V|})$
- A document is a vector of binary features $(X_1, \ldots, X_{|V|})$
- X_i is 1 if w_i appears in the document, 0 otherwise

$$P(doc|\omega_j) = \prod_{i=1}^{|V|} P(x_i|\omega_j) = \prod_{i=1}^{|V|} \theta_{ji}^{x_{ji}} (1 - \theta_{ji})^{1-x_{ji}}$$

$$\hat{\theta}_{ji} = \frac{N_{ji} + c_i}{N_j + c} \quad N_{ji} : \# \text{ of documents in class } j \text{ with word } w_i$$

- Multi-variate Bernoulli Model
- The number of times a word occurs in a document is not captured

Multinomial Model

- Assume that probability of encountering a specific word in a particular position is independent of the position, $P(w_k|\omega_j)$
 - The number of probabilities to be estimated drops to $2 \times |\text{vocabulary}|$

- Treat each document as a bag of words!

- Each document d results from $|d|$ draws on a multinomial variable X with $|V|$ values

- The number of times a word occurs in a document is captured
Multinomial Model

• Assume that the lengths of documents are independent of class

\[P(d|\omega_j) = \frac{\prod_k N_k^{!|V|}}{\prod_k N_k^{!|V|}} \prod_{k=1}^{V} P(w_k|\omega_j)^{N_k} \]

\(N_k \) is the # of occurrences of \(w_k \) in document \(d \)

\[P(w_k|\omega_j) = \hat{\theta}_{jk} = \frac{N_{jk} + c_k}{\sum_k N_{jk} + c} \]

\(N_{jk} \) is the # of occurrences of \(w_k \) in documents in class \(j \)

Learn_naive_Bayes_text(Examples)
1. collect all words and other tokens that occur in Examples
 • Vocabulary: all distinct words and other tokens in Examples
2. calculate the required probability terms
 • For each target value \(\omega_j \) do
 • \(docs_j \): subset of Examples for which the target value is \(\omega_j \)
 • \(P(\omega_j) = |docs_j|/|Examples| \)
 • \(Text_j \): a single document created by concatenating all members of \(docs_j \)
 • \(n \): total number of words in \(Text_j \) (counting duplicate words multiple times)
 • for each word \(w_k \) in Vocabulary
 • \(n_k \): number of times word \(w_k \) occurs in \(Text_j \)
 • \(P(w_k|\omega_j) = (n_k + 1)/(n + |Vocabulary|) \)
Classify_naive_Bayes_text(Doc)
1. positions: all word positions in Doc that contain tokens found in Vocabulary
2. Return ω_{NB}, where

$$
\omega_{NB} = \arg \max_{\omega_j} P(\omega_j) \prod_{i \in \text{positions}} P(x_i | \omega_j)
$$

Naive Bayes Classifier

- Twenty NewsGroups
- Given 1000 training documents from each group. Learn to classify new documents according to which newsgroup it came from

 comp.graphics
 comp.os.ms-windows.misc misc.forsale
 comp.sys.ibm.pc.hardware rec.autos
 comp.sys.mac.hardware rec.motorcycles
 comp.windows.x rec.sport.baseball
 alt.atheism rec.sport.hockey
 soc.religion.christian talk.religion.misc
 talk.politics.mideast sci.space
 talk.politics.misc sci.crypt
 talk.politics.guns sci.electronics
 sci.med
Naive Bayes Classifier

• Use 2/3 documents as training examples

• Performance was measured over the remaining third

• Naive Bayes: 89% classification accuracy
 • 100 most frequent words were removed from Vocabulary ("the", "of")
 • Any word occurring fewer than 3 times was removed