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A formal impulse-based analysis is presented for the col-

lision of two rigid bodies at single contact point under

Coulomb friction in three dimensions (3D). The tangential

impulse at the contact is known to be linear in the sliding

velocity whose trajectory, parametrized with the normal im-

pulse and referred to as the hodograph, is governed by a gen-

erally non-integrable ordinary differential equation (ODE).

Evolution of the hodograph is bounded by rays in several

invariant directions of sliding in the contact plane. Exact

lower and upper bounds are derived for the number of such

invariant directions, utilizing the established positive defi-

niteness of the matrix defining the governing ODE. If the

hodograph reaches the origin, it either terminates (i.e., the

contact sticks) or continues in a new direction (i.e., the con-

tact resumes sliding) whose existence and uniqueness, only

assumed in the literature, are proven. Closed-form integra-

tion of the ODE becomes possible as soon as the sliding ve-

locity turns zero or takes on an invariant direction. Assuming

Stronge’s energy-based restitution, a complete algorithm is

described to combine fast numerical integration with a case-

by-case closed-form analysis. A number of solved collision

instances are presented. It remains open whether the mod-

eled impact process will always terminate under Coulomb

friction and Stronge’s (or Poisson’s) restitution hypothesis.

1 Introduction

A collision between two rigid bodies is often modeled

as an event happening at a single contact point with an in-

finitesimal duration. Despite the infinitely large impulsive

force, the momentum of each involved body will undergo

only a finite amount of change. Newton’s second law in the

integral form equates this change with the impulse exerted

by the other body, which suggests that the impact as a pro-

cess should be described in terms of the finite impulse rather

than the infinitesimal time.

The impact problem cannot be solved under conserva-

tion of momentum alone. Three hypotheses were introduced

by Newton (1686), Poisson (1827), and Stronge (1990) to

respectively quantify the relationships between the pre- and

post-impact velocities, between the impulses accumulated

during the two impact phases: compression and restitution,

and between the energies accumulated/released during these

phases. Their measures, taking the forms of ratio and con-

cerning quantities along the contact normal, are referred to

as the kinematic, kinetic, and energetic coefficients of resti-

tution, respectively.

During the collision, impulse also exists in the tangential

direction at the contact due to friction and tangential compli-

ance. Study has primarily focused on the effect of friction,

although that of tangential compliance has begun to receive

some attention (Stronge, 2000; Cross, 2010; Jia 2013).

To deal with friction, application of Newton’s hypoth-

esis previously relied on some theoretically unjustified ra-

tios of tangential impulse to normal impulse (Brach 1989;

Smith 1991). Meanwhile, algebraic approaches based on

linear complementarity formulations (Glocker and Pfeiffer

1995; Stewart 2000) or resorting to the use of two restitution

parameters (Chatterjee and Ruina 1998) did not capture the

progressive nature of the physical process.

Most of the investigations on impact with friction have

applied Poisson’s hypothesis. In two dimensions (2D), Routh

(1905) developed a graphical representation of the impulse

accumulation. His approach was extended by Wang and Ma-

son (1992) into a complete solution which considered all five

possible sequences of contact and impact mode changes. The

existence of a closed-form solution to the 2D problem is pri-

marily attributed to the fact that contact slip can only take



place along either of the two opposite tangential directions at

the contact.

In three dimensions (3D), however, slip may happen

along any direction in the contact plane. Darboux (1880)

and Keller (1986) found that the evolution trajectory of the

sliding velocity, referred to as the hodograph, was governed

by a first order differential equation (ODE) which is analyt-

ically non-integrable in general. The ODE, derived under

Coulomb’s law of friction, specifies the derivative of the slid-

ing velocity with respect to normal impulse as a linear func-

tion of the velocity direction.

Although only the ending point of the hodograph is

needed to determine the tangential impulse accumulation

during the slip, generally there is no short cut to locate this

point other than numerical integration. Stable (but not ef-

ficient) numerical integration methods were investigated by

Zhao and Liu (2007), and Zhang and Sharf (2007). Slow

integration hinders not just the modeling effort but also, in a

broader sense, application of impact to real tasks where mod-

eling may be executed as a subroutine many times by some

higher level modeling or planning algorithm.

As this paper will demonstrate, considerable speedup in

numerical integration can indeed be achieved by exploiting

the geometry of the hodograph as a parametric plane curve.

Another improvement will be based on the observation that

closed-form integration is possible (and thus numerical inte-

gration should terminate) in a couple of situations which hap-

pen frequently. In the first situation, the growing hodograph

may reach one of several directions, referred to as invariant

directions (Bhatt and Koechling 1995; Batlle 1996; Elkaran-

shawy2007), in which the sliding velocity and its derivative

are collinear. The second situation occurs when the slid-

ing velocity turns zero. It is known (Keller 1986; Bhatt and

Koechling 1995; Batlle 1996) that starting at this moment ei-

ther stick will happen or slip will resume in a constant direc-

tion. Along this new direction the tangential contact accel-

eration would coincide with the prediction by the governing

differential equation if the velocity assumes the same direc-

tion. Whether the contact mode turns into stick or resumed

slip, the change in the tangential impulse will assume a linear

form.

Most of the aforementioned works on frictional 3D im-

pacts applied Poisson’s hypothesis. Although evolution of

the hodograph is not affected by the particular impact hy-

pothesis adopted, where the curve will end is. Poisson’s

hypothesis, along with Newton’s, was found to be energet-

ically inconsistent with Coulomb’s law of friction (Kane and

Levinson 1985; Stronge 2000) if the direction of slip either

reverses during a 2D collision or varies during a 3D colli-

sion. Thus, neither hypothesis is truly adequate for describ-

ing the 3D impact. Stronge’s hypothesis, directly related to

irreversible deformation at the contact [4, p. 47], is the only

one consistent with energy conservation. In this paper, we

will use Stronge’s hypothesis to model the energy loss.

An efficient solution of the 3D impact problem should

begin with fast numerical integration, and switch to close-

form evaluation as soon as sliding either takes on an invariant

direction or (momentarily) reaches zero velocity. The impact

phase—compression or restitution—is meanwhile tracked or

predicted, based on the changing potential energy stored at

the contact.

Section 2 will go over the setup of the impact equation,

and establish the positive definiteness of the inverse inertia

matrix which, when multiplied with the impulse, yields the

change in contact velocity. It will also overview the com-

monly used solution scheme under Strong’s hypothesis (eas-

ily adaptable to work with Poisson’s hypothesis). Section 3

will derive the linear dependence of impulse on the sliding

velocity. Their relationship was given in an integral form be-

fore (Keller 1986). Section 4 will study the governing ODE

of the hodograph, bounding the number of invariant direc-

tions. (To keep the flow of reading, the proof of this result

will appear in Appendix A.) Section 5 will be devoted to an

analysis of the situation when the sliding velocity reaches

zero, establishing the existence and uniqueness (proof given

in Appendix B) of the centrifugal direction along which slid-

ing will resume if sticking does not happen. Such existence

and uniqueness were merely stated and assumed to be true

without proof in the past. Section 6 will present a complete

algorithm which takes into account all possible orderings of

events where the sliding velocity becomes zero, the sliding

direction becomes invariant, or compression ends. Numeri-

cal integration will be carried out using a step size adapted

to the hodograph’s differential geometry. Several solved in-

stances will also be presented.

While a real collision always ends, termination of the

modeled process, whether under Poisson’s or Stronge’s hy-

pothesis, has so far been only assumed but not mathemati-

cally proven. This could be an ultimate check on the con-

sistency between Coulomb’s law and either hypothesis. To

elaborate, termination of the modeled impact process hinges

on endings of both compression and restitution in all possi-

ble impact scenarios. Ending of compression, for instance,

depends on the normal contact velocity eventually increas-

ing to zero. This velocity component, however, is generally

affected by tangential impulse due to Coulomb friction. The

first author has been able to prove termination of all 2D im-

pacts (Jia et al. 2016). For a 3D impact, we will provide

an explanation in Section 2.3 why it is conceivably much

harder to establish impact termination. There is a good news

though. Termination will be guaranteed under a mild condi-

tion, which is rarely violated given the positive definiteness

of the inverse inertia matrix.

2 Impact Equations

Fig. 1 shows two bodies B1 and B2 colliding at a point

c. For convenience, we place the world frame W at c with

the z-axis in the direction of the inward surface normal of

B1 (and thus the xy-plane aligned with the tangent plane).

Each Bi has a body frame Fi, located at its center of mass

oi and defined by its principal axes, in which the angular

inertia matrix Qi is diagonalized. The rotation of Fi from

W is described by the matrix Ri, while the translation is−ri,

where ri = c− oi.

Let Vi be the velocity of the body Bi. Also, let ωωωi be the
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Fig. 1. Impact between two bodies. The impulse I consists of a

component Iz along their contact normal (aligned with the z-axis),

and a tangential component I⊥ (in the xy plane) due to contact fric-

tion. The line of impact ℓ through c is normal to the two contacting

surfaces.

angular velocity of Bi which, by convention, is in terms of a

fixed frame instantaneously coincident with Fi.

The line ℓ through c and normal to the two contacting

surfaces (and thus aligned with the z-axis) is called the line

of impact. The impact is central if ℓ passes through o1 and

o2, and eccentric otherwise [4, pp.2–3]. It is called a direct

impact if both pre-impact velocities V−i , i = 1,2, are along ℓ,
and an oblique impact otherwise. From now on, the super-

scripts ‘−’ and ‘+’ of a quantity will refer to its values just

before and after the impact, respectively.

Let F be the contact force exerted on B1 by B2. Since

the impact duration τ is very small (tends to zero, mathemat-

ically), F is significantly larger than the gravitational forces

on the two objects. For this reason, we will ignore gravity in

impact analysis. Newton’s and Euler’s equations on dynam-

ics are respectively

F = m1V̇1,

R−1
1 (r1×F) = Q1ω̇ωω1 +ωωω1×Q1ωωω1,

where the dot ‘.’ denotes differentiation with respect to time.

Integrate the above equations over the time period [0,τ], ne-

glecting the integral of the finite term ωωω×Q1ωωω as τ→ 0:

I = m1∆V1,

R−1
1 (r1× I) = Q1∆ωωω1.

Here, I is the impulse exerted by B2 onto B1, and ∆V1 and

∆ωωω1 are the changes in V1 and ωωω1, respectively. The impact

equations for B2 can be set up similarly, and solved together

with those for B1 for the velocity changes during the impact:

∆V1 =
1

m1
I and ∆ωωω1 = Q−1

1 R−1
1 (r1× I),

∆V2 = −
1

m2
I and ∆ωωω2 = −Q−1

2 R−1
2 (r2× I).

(1)
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Fig. 2. Impacts (a) between two balls and (b) between a ball and a

half-space with infinite mass.

The contact velocity (of B1 relative to B2) at c is

v = (vx,vy,vz)
T = V1 +(R1ωωω1)× r1−V2− (R2ωωω2)× r2.

(2)

Denote by Pi the antisymmetric matrix such that Piu = ri×u

for all vectors u ∈ R
3, and by U3 the 3× 3 identity matrix

diag(1,1,1). Let

S = P1R1Q−1
1 R−1

1 P1 +P2R2Q−1
2 R−1

2 P2. (3)

During the impact, from (2) we see that v changes from its

pre-impact value v− by the following amount:

∆v = ∆V1 +(R1∆ωωω1)× r1−∆V2− (R2∆ωωω2)× r2

= W I, (4)

after substitutions of (1), where

W =

(

1

m1
+

1

m2

)

U3− S. (5)

Fig. 2(a) shows a ball (B1) of radius ρ1 impacting an-

other ball (B2) of radius ρ2. Both balls have uniform mass

density. Let the body frames of F1 and F2 have the same ori-

entations as that of the world frame W . Namely, R1 = R2 =
U3. Also, r1 = (0,0,−ρ1)

T and r2 = (0,0,ρ2)
T , inducing

P1 =





0 ρ1 0

−ρ1 0 0

0 0 0



 and P2 =





0 −ρ2 0

ρ2 0 0

0 0 0



 .

Each ball has the angular inertia matrix Qi =
2
5
miρ

2
i U3. It is

then straightforward to evaluate (3) and (5):

S =
2

∑
i=1

5

2miρ
2
i

PiPi = −
5

2

(

1

m1
+

1

m2

)





1 0 0

0 1 0

0 0 0



 ,

W =

(

1

m1
+

1

m2

)





7
2

0 0

0 7
2

0

0 0 1



 .



Suppose we keep B1 as a ball but consider B2 to be an

immobilized half-space (with infinite mass and thus infinite

moments of inertia about its principal axes). The impact is

shown in Fig. 2(b) with W = 1
2m1

diag(7,7,2).

2.1 Inverse Inertia Matrix

The matrix W defined in (5) is called the inverse inertia

matrix [4, p. 66], since its product with the impulse generates

the change in the velocity, as described by (4).

Lemma 1. The matrix S defined in (3) is symmetric. It is

negative definite if o1, o2, and c are not collinear, and nega-

tive semidefinite otherwise.

Proof. Since PT
i =−Pi, (Q

−1
i )T = Q−1

i , and R−1
i = RT

i , the

symmetry of S follows from that

ST =
2

∑
i=1

(

PiRiQ
−1
i R−1

i Pi

)T
=

2

∑
i=1

(−Pi)RiQ
−1
i RT

i (−Pi)

=
2

∑
i=1

PiRiQ
−1
i RT

i Pi = S.

Suppose u 6= 000. We have, for i = 1,2,

uT
(

PiRiQ
−1
i R−1

i Pi

)

u = (uT PiRi)Q
−1
i (RT

i Piu)

= −(RT
i Piu)

T Q−1
i (RT

i Piu)

≤ 0, (6)

because Q−1
i is positive definite. Hence uT Su≤ 0.

In (6), the product is zero if and only if RT
i Piu =

R−1
i (ri × u) = 000, which is equivalent to ri × u = 000 in the

world frame. Therefore, by (3), uT Su = 0 if and only if

r1 × u = r2 × u = 000, or equivalently, if and only if u is

collinear with the vectors from the origin to o1 and o2. Triv-

ial reasoning from here establishes the second statement of

the theorem.

By Lemma 1, the matrix −S is positive semidefinite.

From (5), W is the sum of −S with the positive definite ma-

trix
(

1
m1

+ 1
m2

)

U3.

Proposition 2. The inverse inertia matrix W is symmetric

and positive definite.

2.2 Impact Solution Scheme

The contact velocity v, the contact force F, and the im-

pulse I each has a tangential component (in the x-y plane)

and a normal component (along the z-axis):

v = v⊥+ vzẑ = vxx̂+ vyŷ+ vzẑ, (7)

F = F⊥+Fzẑ = Fxx̂+Fyŷ+Fzẑ, (8)

I = I⊥+ Izẑ = Ixx̂+ Iyŷ+ Izẑ, (9)

where x̂, ŷ, and ẑ are the unit vectors in the directions of x-

, y-, and z-axes of the world frame W . Here, the subscript

‘⊥’ of a vector refers to its projection onto the xy-plane. The

tangential contact force F⊥ is due to Coulomb friction, with

µ being the coefficient of friction.

Impact consists of two phases: compression and resti-

tution. During compression, kinetic energy is converted to

potential energy E at the contact as the normal contact ve-

locity vz increases to zero from its pre-impact value v−z < 0.

This velocity component is, via a substitution of (4),

vz = ẑT (v−+∆v) = v−z + ẑTW I. (10)

During restitution, the elastic portion of the stored potential

energy is converted back to kinetic energy. This portion is

e2, where e is called the energetic coefficient of restitution.

The restitution phase ends with E = 0.

Since the normal contact force Fz is greater than zero

during the impact, its integral, the normal impulse Iz, in-

creases monotonically. It replaces time as the variable. From

now on, we will let ‘′’ denote differentiation with respect to

Iz. Assuming linear normal stiffness, it is easy to show that

E ′ =−vz [6], and hence, by (4),

E ′ = −v−z − ẑTW I

= −v−z −

(

1

m1
+

1

m2

)

Iz + ẑT SI. (11)

For the convenience of description, we introduce the fol-

lowing notation:

Izc : value of Iz at which compression ends (vz = 0);

Izr : (positive) value of Iz at which restitution ends (E = 0);

Ic : value of I when Iz = Izc;

Ir : value of I when Iz = Izr, i.e., the total impulse;

Ec : value of E when Iz = Izc, i.e., maximum value of E .

(12)

The impact problem is solved via increasing Iz from zero,

tracking the contact mode (stick or slip) to obtain the tan-

gential impulse I⊥ as a function of Iz, as well as tracking the

impact phase. The following steps are carried out:

1. Solve E ′=−vz = 0 for Izc with (11) and I(Iz) plugged in.

At E ′ = 0, the impulse I lies in the plane of compression

Pc defined by ẑTW I+ v−z = 0 in the 3D impulse space.

2. Obtain Ec at the end of compression via integrating (11)

over [0, Izc] with the initial value 0.

3. After compression, the energy dissipates by a factor of

1− e2. Obtain the energy form during restitution from

integrating (11) over [Izc, Iz] with the initial value e2Ec.

4. Solve E = 0 to obtain Izr and the total impulse Ir.

5. For i = 1,2, evaluate ∆Vi and ∆ωωωi using (1) with I =
Ir. The post-impact velocities are V+

i = V−i +∆Vi and

ωωω+
i = ωωω−i +∆ωωωi, i = 1,2.

The main effort is to keep track of the values of Iz at which

the contact mode switches or the impact phase changes. The

tangential impulse I⊥ will change its form with every con-

tact mode switch, subsequently affecting the energy form

by (11).
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Fig. 3. Configuration of impact (µ = 0.8 and e = 0.95) be-

tween an icosahedron B1 and a tetrahedron B2, both with uni-

form mass density, respectively. The x-y plane coincides with

a pentagon face of B1, whose center coincides with a vertex

of B2 at c. All pentagons and hexagons on B1 have side

length 0.1. The vector from c to the vertex of the contact-

ing pentagon with the largest y-coordinate rotates from the y-axis

about the z-axis (through B1’s center of geometry) through π/10.

The remaining three vertices of the tetrahedron are located at

(0,0,−0.75)T , (0.5,0,−0.5)T , and (0,0.5,−0.5)T . Other geomet-

ric and physical parameters include: o1 = (0,0,0.232744)T , o2 =

(0.125,0.125,−0.4375)T , m1 = 3.0, m2 = 1.0, Q1 = 0.0671673U3 ,

and Q2 = diag(0.017239,0.022813,0.027135).

Fig. 3 shows the impact between an icosahedron and a

tetrahedron. The shapes, selected for their appeal, do not

increase technical complexity.1 The inverse inertia matrix is

computed as

W =





11.5984 −0.910367 2.44236

−0.910367 9.90134 1.95747

2.44235 1.95746 2.59042



 . (13)

The pre-impact velocities are

V−1 = (−0.1,0.5,0.95)T , ωωω−1 = (0.1,0.1,0.1)T ,
V−2 = (0.1,0.1,1)T , ωωω−2 = (0.1,−0.1,0.1)T .

(14)

The total impulse, computed by Algorithm 1 to be described

in Section 6, is

Ir = (−0.00326657,−0.0592263,0.1007)T. (15)

It yields the following post-impact velocities:

V+
1 = (−0.101089,0.480258,0.983567)T,

ωωω+
1 = (0.138764,−0.100369,0.0755903)T,

V+
2 = (0.103267,0.159226,0.8993)T,

ωωω+
2 = (−0.281687,0.402075,0.589565)T.

1The inverse inertia matrix W in (5) governing impact dynamics (4) de-

pends on the angular inertia matrices of the two bodies, and the relative

positions of the contact point to the two centers of mass. It does not depend

on specific geometry of the two involved bodies.

2.3 Sufficient Condition for Impact Solution

Impact happens because v−z < 0. The solution scheme

described in Section 2.2 works only if vz will eventually in-

crease to zero to end compression, and after that, the energy

E will eventually decrease to zero to end restitution. Both

events have been assumed to happen in previous works on

impact. But, is it possible that one of them will not happen?

For instance, what if vz never increases to zero, or even de-

creases so the two objects will “penetrate” into each other

infinitely?

To understand how vz varies, we look at its derivative v′z
obtained below from (4) and (9):

v′z =
d

dIz

(

v−z + ẑT ∆v
)

= ẑTW I′ = ẑTW ẑ+ ẑTW I′⊥. (16)

Meanwhile, it follows that

I′⊥ = dI⊥/dIz = İ⊥/İz = F⊥/Fz. (17)

Thus, under Coulomb’s law of friction, I′⊥ =−µv⊥/‖v⊥‖ if

v⊥ 6= 000. When v⊥ = 000, it will be shown in Section 5 that I′⊥
has a constant value. To summarize, I′⊥ is determined by v⊥.

But how will v⊥ change? It follows from v⊥ = (U3−
ẑẑT )v and (4) that v′⊥ = (U3− ẑẑT )W I′. Thus, v′⊥ depends

on I′⊥, and essentially on v⊥.

That v′z < 0 can happen. For example, consider v⊥ to be

non-zero in a direction ŝ such that ẑTW ŝ > 0. Thus, I′⊥ =
−µŝ. By (16), a large enough value of µ will result in v′z < 0.

When v′z < 0 happens, will vz continue to decrease or

eventually increase (and finally reach zero to finish compres-

sion)? This question was never raised in the previous works

on impact. For a 2D impact, it can be shown that the nor-

mal contact velocity will eventually increase at a constant

rate to end the impact (Jia et al. 2016). The proof relies on

that a slip may happen in only two (opposite) directions. In

a 3D impact, a slip may happen in any direction in the con-

tact plane, and evolution of v⊥ is governed by a differen-

tial equation (to be derived in Section 4), which is generally

non-integrable. Another complication is the consideration of

all possible topologically distinct sequences of contact mode

switches and the end of compression (as ordered by the Iz

value). To answer the aforementioned question would be too

complex (if not impossible) a task.

Theorem 3. Suppose the following condition holds:

ẑTW ẑ− µẑTW ŝ > 0, for any unit tangent vector ŝ. (18)

Then the impact process as modeled in Section 2.2 will end.

Proof. Suppose that (18) holds. Let b > 0 be the minimum

value of ẑTW ẑ− µẑTW ŝ for all tangent vectors ŝ. Since

‖I′⊥‖ ≤ µ under Coulomb’s law, we infer from (16) that

v′z ≥ b. Thus, vz will increase to zero monotonically to end

compression. After compression, E will decrease at the rate

of vz, which will continue to increase at a rate at least b.

Thus, E will decrease to zero to end restitution.



The condition (18) is called the impact solution condi-

tion. It is a sufficient condition for us to solve the impact

problem.2 The condition is often satisfied given the positive

definiteness of W and the orthogonality of ŝ and ẑ.3 From

now on, the impact configuration will be assumed to satisfy

the condition (18) for the impact problem to be solvable.4

2.4 Solution of Frictionless Impact

When µ = 0, the impact solution condition (18) triv-

ially holds given the positive definiteness of W . The tan-

gential impulse I⊥ does not exist, namely, I⊥ = 000. With

I = Izẑ, equation (10) simplifies to vz = v−z + 1
m

Iz, where

m = (ẑTW ẑ)−1 > 0 since W is positive definite. Letting

vz = 0, we obtain Izc =−mv−z from the above equation.

The energy at this point, from integrating E ′ = −vz, has

the maximum value as follows:

Ec =

(

−v−z Iz−
1

2m
I2
z

)∣

∣

∣

∣

Izc

0

=
m(v−z )

2

2
.

During restitution, the energy assumes the following ex-

pression after dissipation of (1− e2)Ec:

E = e2Ec−

(

v−z Iz +
1

2m
I2
z

)∣

∣

∣

∣

Iz

Izc

=
m

2

(

e2− 1
)

v−z
2
−v−z Iz−

1

2m
I2
z .

The total normal impulse is the root of the quadratic equation

E = 0 that is greater than Izc: Izr =−mv−z (1+ e). Hence, we

have the total impulse: Ir = Izrẑ =−mv−z (1+ e)ẑ.

The icosahedron-tetrahedron impact from Fig. 3, with

µ reset to zero, generates the the final impulse Ir =
(0,0,0.058)T (cf. the value in (15) with friction).

3 Sliding Velocity

While the normal contact velocity vz decides the phase

of impact, the tangential contact velocity v⊥ affects the mode

of contact. It is more convenient to consider the tangential

contact velocity as a 2-tuple: γγγ = (vx,vy)
T , and refer to it as

the sliding velocity. We obtain

γγγ = (x̂, ŷ)T v

= (x̂, ŷ)T (v−+WI) (by (4))

= γγγ−+(x̂, ŷ)TW I (19)

= γγγ−+(x̂, ŷ)TW (Ixx̂+ Iyŷ+ Izẑ)

= γγγ−+B

(

Ix

Iy

)

+ Izd, (20)

2Even if ẑT W ẑ−µẑT W ŝ≤ 0 for some ŝ, we may still be able to solve the

impact problem using the above procedure as long as ẑT W ẑ+ ẑT WI′⊥ > 0

is satisfied throughout the impact.
3In (18), the product ẑT W ŝ has the most positive value when ŝ is in the

direction of W ẑ− ẑẑT W ẑ, the projection of W ẑ onto the tangent plane.
4No violations have happened in our simulation of dozens of impact in-

stances.

where

B = (x̂, ŷ)TW (x̂, ŷ), (21)

d = (x̂, ŷ)TW ẑ. (22)

For the impact configuration in Fig. 3, we obtain

B =

(

11.5985 −0.910369

−0.910369 9.90134

)

and d =

(

2.44236

1.95747

)

.

(23)

For a central impact (like the ball-ball and ball-half-

space impacts in Fig. 2), ri× ẑ = 000. Therefore,

RT
i (ri× ẑ) = 000⇔ RT

i Piẑ = 000⇒ PiRiQ
−1
i RT

i Piẑ = 000,

for i = 1,2. Thus, Sẑ = 000 by (3), which implies x̂T Sẑ =
ŷT Sẑ = 000, and consequently d = 000.

Proposition 4. The 2× 2 matrix B is symmetric and posi-

tive definite.

Proof. The symmetry of B follows directly from (21) and the

symmetry of W . Given any u ∈ R
2 and u 6= 000, we have

uT (x̂, ŷ)TW (x̂, ŷ)u =
(

(x̂, ŷ)u
)T

W

(

(x̂, ŷ)u
)

> 0,

because (x̂, ŷ)u 6= 000 and W is positive definite.

Under Proposition 4, the inverse B−1 exists. From (20)

we obtain the tangential impulse in terms of γγγ and the normal

impulse Iz:

(

Ix

Iy

)

= B−1
(

γγγ− γγγ−− Izd
)

. (24)

If γγγ is fixed at 000, then all possible impulses I to realize it

form a line (parametrized with Iz), referred to as the line of

sticking, in the impulse space:5

Ls :

(

Ix

Iy

)

+B−1
(

γγγ−+ Izd
)

= 000. (25)

We can write the impulse and its derivative as follows:

I = Izẑ+(x̂ ŷ)B−1(γγγ− γγγ−− Izd), (26)

I′ = ẑ+(x̂, ŷ)B−1(γγγ′−d). (27)

5When I reaches the line, sticking only happens if γγγ stays zero.



4 Hodograph and Invariant Directions

The contact slides when γγγ 6= 000. It follows from (17) that

(

I′x
I′y

)

=

(

Fx

Fy

)

/

Fz =−µγ̂γγ, (28)

where γ̂γγ = γγγ/‖γγγ‖. From (28) we easily obtain the derivative

of the impulse during sliding:

I′ = ẑ− µ(x̂, ŷ)γ̂γγ. (29)

Let us differentiate (20) and then substitute (28) in:

γγγ′ = B

(

I′x
I′y

)

+d (30)

= −µBγ̂γγ+d. (31)

The trajectory of the sliding velocity γγγ, referred to as the

hodograph, is a plane curve parametrized with Iz. The curve

has its velocity γγγ′ at a point γγγ(Iz) completely determined by

the direction γ̂γγ from the origin to the point.

Fig. 4(a) plots the hodograph of the impact instance in

Fig. 3. In the figure, gc and gr are the values of γγγ at the end

of compression and restitution, respectively.

In the case of a central impact, the differential equa-

tion (31) is simplified to γγγ′ = −µBγ̂γγ under d = 000. The mag-

nitude ‖γγγ‖ of the sliding velocity decreases monotonically

because
(

γγγT γγγ
)′
=−2µγγγT Bγγγ/‖γγγ‖< 0, given the positive def-

initeness of B.

As the hodograph of γγγ evolves under (31) with Iz in-

creasing, it may reach a point gl at Iz = Izl where γγγ and

−µBγ̂γγ+ d become collinear, namely, γγγ× (−µBγ̂γγ+ d) = 000.6

The case γγγ = 000 will be considered separately in Section 5.

Suppose gl 6= 000 so it has the direction ĝl . It follows that

−µBĝl + d = λĝl for some λ. For Iz ≥ Izl , equation (31),

reduced to γγγ′ = λĝl , can be integrated until γγγ = 000 (if this con-

dition ever holds):

γγγ = gl +λ(Iz− Izl)ĝl . (32)

Starting at gl , γγγ will be moving on a line in the direction ĝl .

There are three cases:

1. λ < 0. The sliding speed ‖γγγ‖ will decrease.

2. λ = 0. This means that γγγ′ = −µBγ̂γγ+ d = 000. Hence, γγγ
will not change in the rest duration of the impact.

3. λ > 0. The sliding speed ‖γγγ‖ will increase.

The direction ĝl is called invariant since the sliding ve-

locity γγγ starting at gl will keep its direction until either γγγ = 000

6The cross product of two tuples (representing two vectors in the x-y

plane) is always along the z-axis, and thus treated as a scalar for conve-

nience.

or the impact ends. Every invariant direction is identified

with a unit vector ŝ ∈ R
2 satisfying the following equation:

ŝ× (−µBŝ+d) = 000. (33)

Such ŝ is called centripetal invariant [20] if ŝT (−µBŝ+d)≤
0, and centrifugal invariant if ŝT (−µBŝ+d) > 0. Invariant

directions depend on the impact configuration and the coef-

ficient of friction but not on the pre-impact velocities.

Theorem 5. Let λ1,λ2 > 0 be the two eigenvalues of B. The

following statements hold:

(i) If λ1 = λ2 and d = 000, every unit vector ŝ ∈ R
2 is an

invariant direction.

(ii) Otherwise, there exist two to four invariant directions.

(iii) If ‖B−1d‖ ≤ µ, every invariant direction is centripetal.

(iv) If ‖B−1d‖ > µ, there exists at least one centripetal in-

variant direction and exactly one centrifugal invariant

direction.

Proof. Since B is symmetric, it has a spectral decomposition

B =UΣUT , where U is an orthogonal matrix and Σ is the di-

agonal matrix diag(λ1,λ2). The following equivalences hold

for a unit vector ŝ:

ŝ× (−µBŝ+d) = 000⇔ ŝ×
(

−µUΣUT ŝ+d
)

= 000

⇔ UT ŝ×
(

−µΣUT ŝ+UT d
)

= 000

⇔ û×
(

−µΣû+UT d
)

= 000 (û =UT ŝ)

⇔ û×
(

−Σû+ µ−1UT d
)

= 000

⇔ û×
(

Σû− µ−1UT d
)

= 000.

In the above, UT acts as a rotation. Also, ŝ and−µBŝ+d are

in the same direction if and only if û and Σû−µ−1UT d are in

opposite directions. The proof of part (i) is then completed

by applying part (i) of Theorem 8 in Appendix A, and that of

part (ii) by applying parts (i)–(iv) of the same theorem.

Suppose ‖B−1d‖ ≤ µ. Hence, we infer

‖Σ−1(−µ−1UT d)‖ = µ−1‖Σ−1UT d‖

= µ−1‖UΣ−1UT d‖

= µ−1‖B−1d‖

≤ 1.

Applying part (v) of Theorem 8, every û collinear with

Σû− µ−1UT d must be in its direction, namely, in the oppo-

site direction of −Σû+ µ−1UT d. Equivalently, every ŝ satis-

fying (33) is centripetal. This establishes (iii).

To establish part (iv), for convenience we introduce the

notation∼ such that u∼w means that the two vectors u and

w are non-zero and in the same direction. From the sequence

of equivalences earlier in the proof, we see that, for unit vec-

tors ŝ and û =UT ŝ,

ŝ∼−µBŝ+d⇔ û∼−(Σû− µ−1UT d),

ŝ∼ µBŝ−d⇔ û∼ Σû− µ−1UT d.
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Fig. 4. Hodographs of four instances of the icosahedron-tetrahedron impact in Fig. 3 generated by changing the values of some physical

parameters listed in its caption and (14): (a) no change; (b) µ= 0.4 and V−1z = 0.2; (c) µ = 0.25 and V−1z = 0.2; and (d) µ = 3.0 and V−1z = 0.5.

Here, V−1z is the z-component of the pre-impact velocity V−1 of the icosahedron. The direction out of the origin along a dashed (blue) line

represents a centripetal invariant direction. The line is labeled with an arrow pointing towards the origin to indicate the magnitude change of

the sliding velocity in this direction. The direction out of the origin along a dashed (red) line represents a centrifugal invariant direction. This

line is labeled with an arrow pointing away from the origin.

That ‖B−1d‖ > µ implies ‖Σ−1(−µ−1UT d)‖ > 1. Applying

part (vi) of Theorem 8 from Appendix A, there exists at least

one unit vector û such that û ∼ Σû− µ−1UT d, and exactly

one such that û∼−Σû+ µ−1UT d.

To find all the invariant directions, we first check if

(−1,0)T is one. Then, let the unit vector ŝ represent a di-

rection. Utilize the one-to-one correspondence ŝ = ((1−
η2)/(1 + η2),2η/(1 + η2))T from (−∞,∞) to the set of

all unit vectors except (−1,0)T . Substitute this expression

into (33). After some cleanup, we end up with a quartic

polynomial equation in η, which has roots in analytic forms.

Each real root of η leads to a distinct invariant direction. If

‖B−1d‖≤ µ, the found directions are all centripetal invariant.

Otherwise, we can easily check the sign of the cross product

ŝ× (−µBŝ+d) to determine the unique centrifugal invariant

direction.

Generally, λ1 6= λ2 or d 6= 000. The invariant directions ŝk,

2 ≤ k ≤ 4, partition the plane into up to four sectors. The

hodograph γγγ(Iz) must stay within one sector and not cross

either of its two bounding rays. Once γγγ(Iz) reaches such a

bounding ray, it will stay on the ray until γγγ = 000 or the end of

the impact otherwise.

For the icosahedron-tetrahedron impact in Fig. 3, we

calculate ‖B−1d‖ = 0.3157 from (23). Fig. 4(b)–(d) shows

the hodographs of three modified instances of the impact by

changing only the values of µ and V−1 . The one in Fig. 4(b),

satisfying ‖B−1d‖ < µ, has two centripetal directions. At gl ,

the hodograph reaches one of them and then moves along this

direction to reach the origin. The instance in Fig. 4(c), under

‖B−1d‖> µ, has a centripetal direction as well as a centrifu-

gal direction. At gl , the hodograph moves away from the ori-

gin in the centrifugal direction. Fig. 4(d) displays a situation

with four centripetal invariant directions but no centrifugal

invariant direction since ‖B−1d‖< µ.

5 Vanishing of Sliding Velocity

Suppose that γγγ becomes 000 at some value Iz = Izs (Izs = 0

if γγγ− = 000). Denote by Is the value of I at the moment. For

the contact to stick, γγγ′= 000 must be maintained, which by (30)

implies that the tangential impulse must change at a constant

rate:

(

I′x

I′y

)

=−B−1d. (34)

Under Coulomb friction, ‖I′⊥‖ =
√

I′2x + I′2y ≤ µ. We

need to look at two cases: ‖B−1d‖ exceeds µ or not. The

matrix B depends only on the impact configuration and the

objects’ mass and inertia properties. This means that we can

predict at the start of impact what will happen after γγγ reaches

zero — whether it would stick or continue sliding — without

knowing if γγγ = 000 will happen.

5.1 Stick

When ‖B−1d‖ ≤ µ, friction will be enough to keep

the contact stay in the sticking mode. Substituting γγγ = 000

into (26), we obtain the impulse as a linear function of Iz

from now on until the impact ends:

I = Izẑ− (x̂, ŷ)B−1(γγγ−+ Izd), Iz ≥ Izs. (35)

The above equation defines a line Ls in the impulse space. It

is called the line of sticking [18].

For a central impact, d = 000 and thus B−1d = 000. Sticking

will immediately start when γγγ = 000.

Fig. 5 shows the impulse curve for the impact instance

in Fig. 3 with pre-impact velocities given in (14), and B and

d in (23). It generates the hodograph shown in Fig. 4(a).
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Fig. 5. Impulse curve for the icosahedron-tetrahedron impact. Also

shown are the plane Pc of compression and the line Ls of sticking.
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Fig. 6. Bundle of 15 hodographs resulting from unit γγγ− values for

the icosahedron-tetrahedron collision (µ = 0.8 and vz =−0.2).

Compression ends when the curve reaches Ic. The sliding

velocity becomes zero at Is. Since ‖B−1d‖ = 0.3157 < µ =
0.8, the contact mode changes to stick. The impulse starts

accumulating along the line of sticking Ls to reach the end

point Ir given in (15). Sticking also happens with the impact

instances in Fig. 4 (b) and (d).

Given µ, the matrix B, and the vector d, the hodo-

graph defined by (31) has its shape completely determined

by γγγ−, and its extension determined by the duration of im-

pact which depends on v−z . Fig. 6 shows fifteen hodographs

generated by different unit vectors γγγ− for the icosahedron-

tetrahedron impact in Fig. 3. There exists no centrifugal di-

rection. All hodographs evolve towards the origin. Among

them, γγγi, 1 ≤ i ≤ 4, will not reach the origin due to earlier

ending of restitution. The remaining eleven hodographs will

reach the origin and stay there with the contact sticking. The

hodographs γγγ1 and γγγ5, starting in the only two centripetal di-

rections, are straight line segments.

5.2 Resumed Slip

When ‖B−1d‖ > µ, the contact cannot stick (and slid-

ing will continue). The velocity γγγ will grow out of zero at

Iz = Izs in some direction ŝ. This direction must agree with

the direction of the acceleration at Izs, which is γγγ′=−µBŝ+d

according to (31) with γ̂γγ = ŝ. Thus, the initial direction of re-

sumed sliding must be centrifugal (and this sliding direction

will be maintained). The corollary below then follows from

Theorem 5(iv).

Corollary 6. Suppose ‖B−1d‖> µ. Once the sliding veloc-

ity γγγ reaches zero, sliding will continue in the unique cen-
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Fig. 7. Hodograph of the impact instance in Fig. 3 with the

following changed parameter values: µ = 0.25 and V−1 =

(−0.7,−0.35,−0.5)T .
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Fig. 8. Bundle of 13 hodographs resulting from unit γγγ− values for

the icosahedron-tetrahedron collision (µ = 0.25 and vz =−0.8).

trifugal direction.

Fig. 7 displays the hodograph of a modified instance of

the icosahedron-tetrahedron impact. The sliding velocity γγγ
becomes zero during compression, and afterwards, acceler-

ates in a centrifugal invariant direction until the impact ends.

Fig. 8 displays thirteen hodographs resulting from dif-

ferent unit values of γγγ− when ‖B−1d‖ > d. There ex-

ist one centrifugal and one centripetal directions. All the

hodographs drift towards the centrifugal direction, although

only six of them, γγγi, 1≤ i≤ 6, finally reach it. Among these

six hodographs, γγγ6 starts in the centrifugal direction and thus

evolves out a straight trajectory; γγγ1, γγγ4, and γγγ5 reach the di-

rection but not the origin; γγγ2 starts in the centripetal direction,

reaches the origin, and switches to the centrifugal direction;

and γγγ3 reaches the origin before continuing in the centrifugal

direction.

After the sliding velocity γγγ becomes zero, the tangential

impulse I⊥ will be accumulating along a constant direction.

Since−µBŝ+d= λŝ for some known λ> 0, we have γγγ′ = λŝ

by (31) and I′ = ẑ+(x̂, ŷ)B−1(λŝ−d) by (27).

Suppose we know the value Iz = Izs at which γγγ will be-

come zero. Whether sticking or resumed sliding will hap-

pen next, the impulse accumulation will start to take a linear

form in Iz. Unfortunately, there is no way of determining Izs

in general without integrating the differential equation (31).



6 Solution of the Impact Problem

This section will expand the solution scheme outlined in

Section 2.2 into an algorithm. The normal impulse Iz, accu-

mulating from zero until the impact ends, is the sole variable.

As Iz reaches certain value, the current impact phase will end

or the current contact mode will change. The impulse I is

tracked by integrating the system (31) over Iz, either numer-

ically or analytically, and then evaluating (26). The energy,

deciding when an impact phase ends, is tracked by integrat-

ing (11).

Theorem 7. Given the impact configuration for two bodies

B1 and B2, and their inertia properties, the total impulse

Ir (and therefore the changes in their velocities according

to (1)) depend on the pre-impact contact velocity v− not on

individual pre-impact velocities.

Proof. The inverse inertia matrix W defined in (5) is deter-

mined by the impact configuration and the bodies’ inertia

properties, so are the matrix B in (21) and the vector d in (22)

which govern the evolution of the sliding velocity γγγ in (31).

During the impact, the impulse I is evaluated based on γγγ and

the normal impulse Iz according to (26). When the contact

slides, γγγ evolves according to (31) which has a unique solu-

tion in terms of Iz. When the contact sticks, the impulse I

has a simplified form (35) in terms of Iz. Slip or stick is ini-

tialized with v−, and determined by checking if γγγ = 000, and,

if true, by further checking if ‖B−1d‖ ≤ µ. In summary, the

growth in I is completely determined by the impact configu-

ration and v−.

Meanwhile, the potential energy E at the contact, evolv-

ing under (11), completely depends on I and v−z . So are the

ends of compression (E ′ = 0) and restitution (E = 0). Thus,

the value of Ir at the end of restitution is determined.

Our impact solution will make use of events which rep-

resent certain moments during the impact. An event ι is mea-

sured in terms of the value of the normal impulse Iz at which

the event happens. For two events ι1 and ι2, we write ι1 ≺ ι2

if ι1 occurs before ι2, and ι1 � ι2 if ι1 occurs before or si-

multaneously with ι2. There are five possible events:

1. Event 0 refers to the start of the impact.

2. Event c refers to the end of compression.

3. Event r refers to the end of restitution.

4. Event s happens when the sliding velocity γγγ first be-

comes zero. At the event, either the contact mode

changes from sliding to sticking or sliding will resume

along a new constant direction.

5. Event l happens when γγγ×(−µBγ̂γγ+d) first becomes zero

but γγγ has been non-zero until this moment (inclusive).

Afterward, the contact will be sliding along a line.

On the hodograph, events 0 and s correspond to the origin,

while events c, r, and l are marked by the points gc, gr, and

gl, respectively.

Events c and r always happen sequentially unless the

coefficient of restitution e is zero; namely, c� r. The defini-

tions of events s and l imply the following: a) neither event

happens more than once; b) event l, if happens, must precede

cr (c� r):
0 c r

scr (s� c� r):
0 c rs

csr (c≺ s� r):
0 rsc

lscr (l ≺ s� c� r):
0 rcsl

lcsr (l � c� s� r):
0 rl sc

lcr (l � c� r):
0 rl c

clsr (c≺ l ≺ s� r):
0 rl sc

clr (c≺ l � r):
0 rlc

Fig. 9. Eight possible event sequences. A dashed line segment

connecting two events represents a period over which the impulse

growth has to be computed via numerical integration, while a solid

line segment represents a period during which the impulse growth

has a closed form.

event s, namely, l ≺ s must hold; c) event s may or may not

happen. The event s may coincide with either c or r, leading

to three possibilities: s� c, c≺ s� r, and no occurrence of s.

Event l also has the same three possibilities relative to events

c and r.

Based on the above relationships, easy reasoning con-

cludes with eight possible event sequences as shown in

Fig. 9. The sequence cr represents no occurrence of event s

or l. The next two sequences scr and csr have the occurrence

of event s but not event l. The last five sequences all include

event l, but differ in whether event s also occurs (after l if

so) and in whether the events l and s occur during compres-

sion (i.e., l,s� c) or restitution (i.e., c≺ l,s). Each sequence

describes a different impact scenario.

Impact solution begins with numerical integration until

either event s or event l happens.7, or until event r occurs

otherwise. In the case of event s or l, additional accumula-

tion of the impulse I can be evaluated using one or multiple

closed-forms until the impact ends.

Section 6.1 will describe how to efficiently conduct nu-

merical integration, as this is the only way to solve the impact

scenario cr with no occurrence of event s or l. Scenarios scr

and csr, with no occurrence of event l, will be treated in Sec-

tions 6.2 , while scenarios lscr, lcsr, lcr, clsr, and clr, all

with occurrence of event l, will be treated in in 6.3.

6.1 Fast Numerical Integration

Before event s or l occurs, impact has to be simulated

via numerical integration. The Euler method is carried out

on (31) over the normal impulse Iz to update the tangential

contact velocity γγγ, and then the impulse I according to (26).

Within the same integration step, the potential energy E is

updated according to (11).

Viewing the hodograph as a parametric curve γγγ(Iz), we

adjust the step size of the normal impulse Iz according to the

curve speed ‖γγγ′‖ and absolute curvature |κ|.

1. If we were only to consider constant increment in the

arc length, say, h1, then Iz would follow a (varying) step

size of h1/‖γγγ
′‖.

7Each of the two events may happen at the start.



2. If we were only to consider constant increment in the

tangential angle, say, h2, then Iz would follow a step size

of h2/(|κ|‖γγγ
′‖). Here, we make use of the definition of

curvature as the derivative of the tangential angle with

respect to arc length [23, p. 29], to adjust the arc length

increment ∆s as h2/|κ|.

Combining the above two factors, we set the step size for

numerical integration as below:

h = ε
h1

‖γγγ′‖
+(1− ε)

h2

|κ|‖γγγ′‖
, for 0 < ε < 1. (36)

From (31), all high order derivatives of γγγ can be expressed in

terms of γγγ. The curvature is thus derived as

κ =
γγγ′× γγγ′′

‖γγγ′‖3

=
(−µBγ̂γγ+d)×

[

−µBγ̂γγ×
(

(−µBγ̂γγ+d)× γ̂γγ
)]

‖γγγ‖ · ‖− µBγ̂γγ+d‖3
. (37)

If γγγ locally curves a lot, i.e., if |κ| is large, then the first

summand in (36) dominates the second one. In this case,

the step size is influenced more by the speed — the higher

the speed the smaller the step size. If γγγ is locally straight,

i.e, |κ| is small, then the second summand will dominate the

first one. The step size is influenced more by the curvature

— the higher the curvature the smaller the step size. The

coefficient ε in (36) may be fixed or adjusted dynamically

during the integration.

6.2 Event s (Zero Sliding Velocity)

Suppose that event s happens at Iz = Izs.
8 The values

of I and E are respectively Is and Es at this moment. First,

substitute γγγ = 000 and Iz = Izs into (26) to polish the value of

Is obtained through numerical integration. Combine (27) for

sticking (with γγγ′ = 000) and (29) for resumed sliding (with γ̂γγ
set to the unique centrifugal direction ŝ) into one equation:

I′=σσσ=

{

ẑ− (x̂ ŷ)B−1d, if ‖B−1d‖ ≤ µ (sticking);

ẑ− µ(x̂ ŷ)ŝ, if ‖B−1d‖ > µ (resumed sliding).

(38)

The impulse will take the new form:

I = Is +(Iz− Izs)σσσ, for Iz ≥ Izs, (39)

with the ending value Ir = Is +(Izr− Izs)σσσ. Hence, the task

becomes one to determine the normal impulse value Izr at the

end of restitution.

Check the sign of E ′ at Izs according to (11). If E ′ ≥ 0,

we infer Izs ≤ Izc , the value of Iz when compression ends,

i.e., s� c; otherwise, Izs > Izc, i.e., c≺ s. We substitute (39)

8This includes the case γγγ− = 000 where Izs = 0.

into (11) to obtain the energy derivative after event s (i.e., for

Iz ≥ Izs):

E ′ = −v−z −

(

1

m1
+

1

m2

)

Iz + ẑT S
(

Is +(Iz− Izs)σσσ
)

= −v−z + ẑT S(Is− Izsσσσ)−
1

mσ
Iz, (40)

where mσ = ( 1
m1

+ 1
m2
− ẑT Sσσσ)−1. The above derivative has

the following indefinite integral (with the constant term ig-

nored):

Φ1(Iz)≡
(

−v−z + ẑT S(Is− Izsσσσ)
)

Iz−
1

2mσ
I2
z . (41)

Two cases below arise:

Case 1 Compression has not ended by Iz = Izs, yielding the

event sequence scr. Example hodographs are shown in

Figs. 4(d) and 7. (Note that event s is represented by the

origin.) Solving the equation E ′ = 0 after a substitution

of (40), we first obtain Izc = mσ

(

−v−z + ẑT S(Is− Izsσσσ)
)

.

The maximum energy (achieved at the end of compres-

sion) is Ec = Es +Φ1(Izc)−Φ1(Izs) . During restitu-

tion, the energy takes the form E = e2Ec + Φ1(Iz)−
Φ1(Izc). Letting E = 0 and substituting (41) in, we

end up with a quadratic equation: a2I2
z + a1Iz + a0 = 0,

where a2 =−
1

2mσ
, a1 =−v−z + ẑT S(Is− Izsσσσ), and a0 =

e2Ec−Φ1(Izc).
Case 2 Compression has ended by Iz = Izs, yielding the

event sequence csr. An example is Fig. 4(a). Since

it is during restitution, the energy has the form E =
Es + Φ1(Iz)− Φ1(Izs), for Iz ≥ Izs. Vanishing of E

yields the quadratic equation a2I2
z +a1Iz+b0 = 0, where

b0 = Es−Φ1(Izs).

In either case, we solve the resulting quadratic equation

to obtain Izr as the smallest root greater than Izs.

6.3 Event l (Straight Sliding)

Suppose that event l happens at Iz = Izl with γγγ at gl . De-

note by Il and El the current values of I and E , respectively.

Since gl 6= 000, we let ĝl be its direction. For Iz≥ Izl and as long

as γγγ 6= 000, γγγ′ = λĝl for some λ. This implies (32), from which

we obtain the corresponding normal impulse Izs = Izl +∆Iz at

which event s would happen:

∆Iz =

{

−‖gl‖/λ, if λ < 0, i.e., ĝl is centripetal,

∞, otherwise.
(42)

Meanwhile, the impulse is, from integrating (29),

I = Il +(Iz− Izl)δδδ, (43)

where

δδδ = ẑ− µ(x̂, ŷ)ĝl . (44)



Substitute (43) into the energy derivative (11):

E ′ =−v−z + ẑT S(Il− Izlδδδ)−
1

mδ
Iz, (45)

where mδ = ( 1
m1

+ 1
m2
− ẑT Sδδδ)−1, and integrate:

Φ2(Iz) =
(

−v−z + ẑT S(Il− Izlδδδ)
)

Iz−
1

2mδ
I2
z . (46)

If l ≺ c, solution of the equation E ′ = 0 yields the nor-

mal impulse value ζc = mδ

(

−v−z + ẑT S(Il− Izlδδδ)
)

at which

compression would end if γγγ 6= 000 is to be maintained. Two

event sequences arise from comparing Izs with ζc.

Case 1 (Izs ≤ ζc) The sequence is lscr. Here, γγγ will have

decreased to 000 by the end of compression. An example

instance is shown in Fig. 4(b). Set Es = Φ2(Izs), and

Is = Il +(Izs− Izl)δδδ. (47)

From this point on, handle the case exactly the same as

the event sequence scr in Case 1 in Section 6.2.

Case 2 (Izs > ζc) In this case, sliding will continue into

restitution. Set Izc = ζc and Ec = El +Φ2(Izc)−Φ2(Izl).
Before γγγ becomes zero, the energy is E = e2Ec +
Φ2(Iz)−Φ2(Izc). Again, by setting E = 0 we end up

with a quadratic equation: Φ2(Iz)+ e2Ec−Φ2(Izc) = 0.

Let ζr be the smallest root greater than Izc. This is the

value of Iz at the end of restitution if sliding continues

until then. There are two further subcases:

Case 2a (Izs ≤ ζr) This leads to the event se-

quence lcsr. An instance is shown in Fig. 10(a).

Let Es = e2Ec +Φ2(Izs)−Φ2(Izc) and set Is ac-

cording to (47). Handle the period Iz > Is exactly

as for the sequence csr described as Case 2 in Sec-

tion 6.2.

Case 2b (Izs > ζr) This is the event sequence lcr.

The sliding velocity will never decrease to zero.

Fig. 10(b) shows an example. We let Izr = ζr and

Ir = Il +(ζr− Izl)δδδ.

If compression has ended by Iz = Izl , the energy takes

the form E = El +Φ2(Iz)−Φ2(Izl) for Iz ≥ Izl . By setting

E = 0 and substituting (46) in, we obtain the quadratic equa-

tion Φ2(Iz)+El−Φ2(Izl) = 0. Solve the equation for ζr, the

smallest root greater than Izc. Again, two cases arise:

Case 3 (Izs ≤ ζr) This yields the event sequence clsr. See

Fig. 10(c) for an impact instance. Let Es = El +
Φ2(Izs)−Φ2(Izl) and set Is according to (47). Deter-

mine Ir as in Case 2 in Section 6.2.

Case 4 (Izs > ζr) This yields the event sequence clr in

Fig. 9(h). The sliding velocity will never decrease to

zero, as with the impact instance in Fig. 4(c). Let Izr = ζr

and Ir = Il +(ζr− Izl)δδδ.

Algorithm 1 Impulse Computation

1: evaluate v− according to (2)

2: I← 000

3: evaluate B and d according to (21) and (22)

4: while (Iz = 0 or E 6= 0) and neither of events s and l

happens do

5: reset the step size h for Iz according to (36)

6: update γγγ via one-step integration of (31) over Iz

7: update I according to (26)

8: update vz according to (10)

9: update E via one-step integration of (11)

10: if vz = 0 (compression ends) then

11: Izc← Iz

12: Ec← E

13: E← e2E

14: end if

15: end while

16: if E = 0 then

17: return I

18: else

19: set σσσ according to (38)

20: if event s occurs then

21: Is← Izẑ− (x̂, ŷ)B−1(γγγ−+ Izd)
22: determine Izr as in Section 6.2

23: return Is +(Izr− Izs)σσσ
24: else

25: determine Izs, Is (if needed) and Izr as in Section 6.3

26: if event s occurs then

27: return Is +(Izr− Izs)σσσ
28: else

29: set δδδ according to (44)

30: return Il +(Izr− Izl)δδδ
31: end if

32: end if

33: end if

6.4 Impact Algorithm and Execution Examples

Algorithm 1 computes the total impulse Ir. The while

loop of lines 4–15 performs numerical integration of (31) to

track the sliding velocity γγγ. Lines 21–23 are executed when

event s occurs. Lines 25–31 are executed when event l oc-

curs.

The algorithm computes the icosahedron-tetrahedron

impact in Fig. 3 with the pre-impact velocities (14), and an-

other impact between a pin and a ball used in bowling (hy-

pothetically without the floor support). The second impact,

with its configuration specified in Fig. 11, has the inverse in-

ertia matrix

W =





1.55465 0.00238675 −0.360808

0.00238676 5.15191 −0.00313296

−0.360808 −0.00313296 1.105



 .

The pre-impact velocities of the pin and ball are

V−1 = (−0.1,0.2,−0.5)T , ωωω−1 = (0.1,0.1,0.1)T ,
V−2 = (0.1,0.1,1)T , ωωω−2 = (0.1,−0.1,0.1)T .
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Fig. 10. Hodographs of the icosahedron-tetrahedron impact in Fig. 3 with the following changed parameter values: (a) µ = 0.35 and

V−1z = 0.2; (b) µ = 0.25 and V−1z =−1; and (c) µ = 0.55 and V−1z = 0.9.
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Fig. 11. Configuration of impact (µ = 0.7 and e = 0.7) between

a bowling pin (B1) and a ball (B2), both with uniform mass

distribution. Here, o1 = (0.068436,−0.00000242,0.073735)T ,

o2 = (−0.000061,−0.000890,−0.108458)T , m1 = 1.63293,

m2 = 6.35029, Q1 = diag (0.0021186,0.012092,0.014029)T ,

and Q2 = diag(0.0295723, 0.029669,0.030068)T . The shape

of the pin is specified in http://www.bowlingball.com/

BowlVersity/bowling-pin-specification. The

pin is originally symmetric about the z-axis with its center of

mass at the origin. To engage in contact, it rotates about

the y-axis through tan−1(3.15435) and then translates by

(0.068436,0,0.0737351)T . The ball has radius 0.108458. Its

three holes are each created from subtracting a cylinder parallel

to the y-axis. Holes 1 and 2 each has radius 0.0127, while hole

3 has radius 0.0142875. The bottom faces of the three cylinders

are centered respectively at (0.03302,0.067845,−0.126238)T ,

(0.03302,0.067845,−0.090678)T , and (−0.0381,0.0676971,

−0.108458)T .

For each impact, we obtain the “true value” of Ir us-

ing numerical integration with very small step size un-

til closed-form evaluation becomes possible. They are

given in (15) for the icosahedron-tetrahedron impact and

as (0.7330654,−0.0216048,2.585018)T for the pin-ball im-

pact. Then we compare three different solutions: numerical

integration (NI) with fixed step size and no use of closed-

form evaluation even when it becomes possible, as conducted

in previous works, Algorithm 1 using fixed step size of the

normal impulse in integration (FS), and Algorithm 1 using

adjustable integration step size (36) (VS) with ε = 0.5 and

h1 = h2 = 0.01. The error of a method is measured as the

norm of the difference between its obtained value of Ir and

the “true value”.

The code is written in Mathematica 10.3 and executed

on a Lenovo Thinkpad X230i with Intel Core i3-3120M Pro-

cessors and 4 GB system RAM. The results are shown in

Table 1. On the icosahedron-tetrahedron impact, NI, FS,

VS generate outcomes with comparable errors. VS is 74

times faster than NI and 50% faster than FS. On the pin-ball

impact, VS achieves 25 times the accuracy of NI in 1/662

amount of time. It is also more than one time faster than FS

with a slightly higher accuracy.

We have also compared the integration scheme VS

with Mathematica’s numerical solver NDSolve for ODEs.

NDSolve is executed to solve the hodograph governing

equation (31) for the same icosahedron-tetrahedron instance.

Solution of this ODE is the most time consuming part of

impact computation. Three different schemes of NDSolve

are carried out separately: Default adaptive in both step

size and integration method, ExplicitRungeKuttawith

adaptive step size, and ExplicitRungeKutta with a

fixed step size. These three schemes, each executed in

1000 runs, respectively take average times of 0.00252722,

0.00368162, and 0.00316682 seconds. VS, which spends

less than 0.0004134 second on integration as indicated in Ta-

ble 1, is five to eight times faster than NDSolve, which also

produces no better accuracies with its three schemes.

Use of a general ODE solver for impact solution must be

able to track the contact velocity v⊥ during integration, and

then switch to closed-form evaluation as soon as it reaches

zero or assumes a constant direction. The above, if possible,

would make the solver even slower. Hence, there would be

no improvement to combine Algorithm 1 with a general ODE

solver.



Icosa-Tetra Pin-Ball

“Truth” NI FS VS “Truth” NI FS VS

#Step size 1E-6 0.00095 0.001 — 1E-6 0.001 0.002 —

#Iter. 68212 107 69 29 165073 2586 83 29

Time (s) 18.9697 0.0312002 0.000624 0.0004134 46.9563 0.2652 0.000936 0.0004006

Error — 0.000877 0.00108669 0.00111229 —- 0.00143 6.0469E-5 5.70441E-5

Table 1. Impact computation comparison from executing Algorithm 1 respectively with pure numerical integration (NI), integration with fixed

step size coupled with closed-form evaluation (FS), and integration with adaptive step size coupled with close-form evaluation (VS).

7 Discussion

This paper describes a complete algorithm for solving

the 3D frictional impact problem with energy-based restitu-

tion. The presented formal analysis takes an extra step from

the existing inquiries. We have shown the positive definite-

ness of the inverse inertia matrix W and the governing matrix

B of the hodograph evolution, and based on these properties,

proved the existence and uniqueness of the direction for re-

sumed contact sliding. A lower bound for the number of

invariant sliding directions is formally established. Such di-

rections were only argued to exist before.

Closed forms exist for the growth of the hodograph from

the point where it assumes an invariant direction or reaches

the origin. With a linear relationship (26) to the sliding veloc-

ity, the impulse accumulation also begins to assume a closed

form, which makes possible a case-by-case analysis as that

applicable to the two-dimensional impact.

Numerical integration is generally unavoidable for gen-

erating the hodograph from the beginning of the impact. By

exploiting the hodograph’s differential geometry, we have

described an integration scheme to achieve some significant

speed-up.

One challenge is to prove the existence (and unique-

ness) of the impact solution under the contemporary scheme

which combines Coulomb’s friction model with either Pois-

son’s impulse-based or Stronge’s energy-based restitution.

Such existence has only been assumed so far. A proof would

ultimately verify the consistency between these hypotheses

about two different phenomenons: friction and impact.

Another challenge, from the practical side, is how to pre-

dict whether the sliding velocity will reach zero or converge

to an invariant direction, and if so, determine (or estimate)

the normal impulse value at which this happens. Knowing

this value holds the key to avoid numerical integration. Res-

olution of the issue would reduce the simulation time from

tenths of a millisecond (e.g., 0.4 ms for the two impact in-

stances in Table 1) to microseconds. This would make it pos-

sible to simulate collisions in large quantities at high speeds,

affecting a number of applications areas such as high energy

physics, chemistry, robotics, and movie and gaming indus-

tries.

Extension to fast computation of multi-body impacts

also awaits investigation. Such an impact can be either se-

quenced into two-body impacts (Chatterjee and Ruina, 1998)

or treated as simultaneous impacts interacting with each

other (Liu et al. 2008; Jia et al. 2013). With the first ap-

proach, Algorithm 1 is directly applicable to solving indi-

vidual two-body impacts. In the second approach, normal

impulses at different contacts are related to each other differ-

entially, while the normal impulse and the tangential impulse

at each contact are also related differentially. It solves a sys-

tem of ordinary differential equations driven successively by

the normal impulses at some contacts. While the introduced

fast integration scheme in Section 6.1 may be generalized to

multi-body impacts, it is unlikely that closed forms of im-

pulse accumulation will exist over any period.
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Appendix A: Invariant Directions

In this section, we show that generally there exist up

to four unit vectors that will either preserve or reverse their

directions under an affine mapping defined by a diagonal,

positive definite matrix. The result is used in the proof of

Theorem 5 in Section 4.

Theorem 8. Let Σ = diag(λ1,λ2) with λ1,λ2 > 0, and p =
(px, py)

T be a vector. Consider the equation

û× (Σû+p) = 000 (48)

in the unit vector û. The following hold:

(i) When λ1 = λ2, (48) is satisfied by any unit vector û if

p = 000, and by û =±p/‖p‖ if p 6= 000.

(ii) When λ1 6= λ2 and px = 0, (48) is satisfied by the two

vectors (0,±1), and if p2
y < (λ1−λ2)

2, also by the fol-



lowing two vectors:



±

√

1−

(

py

λ1−λ2

)2

,
py

λ1−λ2





T

. (49)

(iii) When λ1 6= λ2 and py = 0, (48) is satisfied by the two

vectors (±1,0), and if p2
x < (λ1−λ2)

2, also by the fol-

lowing two vectors:





px

λ1−λ2
,±

√

1−

(

px

λ1−λ2

)2





T

.

(iv) When λ1 6= λ2, px 6= 0, and py 6= 0, (48) is satisfied by

two to four vectors.

(v) If ‖Σ−1p‖ ≤ 1, every û satisfying (48) must be in the

direction of Σû+p unless the latter is zero.

(vi) If ‖Σ−1p‖> 1, at least one û satisfying (48) is in the di-

rection of Σû+p, and exactly one such û in the opposite

direction of Σû+p.

Proof. Part (i) is trivial to establish. We begin with proving

part (ii). Then, part (iii) will follow by symmetry. Suppose

px = 0. Substitute û = (cosθ,sin θ)T into (48):

cosθ
(

(λ2−λ1)sinθ+ py

)

= 0. (50)

The above equation holds if either cosθ = 0 or, otherwise,

(λ2−λ1)sin θ+ py = 0. The former condition implies û =
(0,±1)T . The latter condition (plus cosθ 6= 0) implies that

no other û satisfies (50) if p2
y > (λ1−λ2)

2, and the two unit

vectors given in (49) also satisfy it if p2
y < (λ1−λ2)

2. (Note

p2
y 6= (λ1− λ2)

2 in order to satisfy (λ2− λ1)sin θ+ py = 0

under cosθ 6= 0, i.e., sinθ 6=±1.)

Let us now establish (iv). It is easy to show u 6=(−1,0)T

to satisfy (48) under py 6= 0. Substitute the bijective mapping

û= ((1−η2)/(1+η2),2η/(1+η2)) over (−∞,∞) into (48),

and multiply away the denominators in the resulting equa-

tion. We end up with a quartic polynomial equation in η:

−pyη4 + 2(λ1−λ2− px)η
3 + 2(λ2−λ1− px)η+ py = 0.

The above equation has 0, 2, or 4 real roots with multiplici-

ties counted. Each distinct root corresponds to a unique unit

vector û satisfying (48). Below we show that there exist at

least two such unit vectors.

Note that the mapping φ : û 7→ Σû+p maps the unit cir-

cle C to an ellipse E centered at p. The origin lies inside, on,

or outside the ellipse if and only if it does the same with the

image of the unit circle under the mapping û 7→ û+Σ−1p. It

is easy to show that the latter happens if and only if ‖Σ−1p‖
is less than, equal to, or greater than 1, respectively. The

three case are considered separately below.
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û3 û1
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û1

p

ℓ
ℓ

Σ−1
p 2p

û2
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Fig. 12. Proofs of part (iv) of Theorem 8: (a) ‖Σ−1p‖ < 1, (b)

‖Σ−1p‖= 1, (c) ‖Σ−1p‖> 1, and (d) of part (v) of the theorem.

Case 1 (‖Σ−1p‖< 1) Without loss of generality, we sup-

pose that the center p of the image ellipse E lies in the

first quadrant, as shown in Fig. 12(a). On the unit cir-

cle C , let ûi, 1 ≤ i ≤ 4, be its intersections of C with

the coordinate axes. Picture a unit vector û rotating

counterclockwise from û1 to û2. Its polar angle varies

across the interval [0, π
2
]. Simultaneously, the image

point w = φ(û) moves across an arc on E that subtends

a polar angle interval properly contained in [0, π
2
]. Be-

cause the movements of û and w start and end simulta-

neously, û and w must achieve the same polar angle at

some point û∗, subsequently, û∗×φ(û∗) = 000.

Meanwhile, the polar angle range [π, 3
2
π] of the third

quarter of C between û3 and û4 is a proper subset of



that subtended by its image arc on E between φ(û3) and

φ(û4). A similar reasoning establishes the existence of

another û on the third quarter of C to satisfy (48).

Case 2 (‖Σ−1p‖= 1) See Fig. 12(b). There exists a u

which maps to the origin, and trivially satisfies (48). Be-

low we show that a second u exists. Let ℓ be the line

through the origin and tangent to the image ellipse E .

This line intersects the unit circle at û1 and û2, which are

labeled in the way such that a counterclockwise traversal

from û1 to û2 will pass through Σ−1p, which is mapped

to the point 2p on E . As a point û moves from û1 to

Σ−1p and to û2, its image point φ(û) moves on E from

φ(û1) to 2p to φ(û2).
9 Since the traversed half circle

(between û1 and û2) and E are on the same side of ℓ, the

polar angle range subtended by the half circle must con-

tain that subtended by the elliptic arc between φ(û1) and

φ(û2). As both traversals start simultaneous and end si-

multaneously, there exists some û∗ during the traversal

that is in the same direction as φ(û∗). Thus, û∗ satis-

fies (48).

Case 3 (‖Σ−1p‖> 1) The origin lies outside the image el-

lipse E . This is illustrated in Fig. 12(c). Let θa and θb be

the polar angles of the two points of tangency from the

origin to E such that 0≤ θa < 2π and θa < θb < θa +π.

Consider a point û starting at (cosθa,sin θa)
T on the unit

circle C to complete a full counterclockwise rotation.

As its polar angle θ increases from θa to θa + 2π, the

polar angle χ(θ) of the image point varies in the range

[θa,θb]. In the θ-α plane shown in Fig. 12(c), the curve

α = χ(θ) starts at (θa,χ(θa)), where χ(θa) ≥ θa, and

ends at (θa + 2π,χ(θa)), where

θa + 2π > θa +π > θb ≥ χ(θa).

Since its two endpoints are on the opposite sides

of the line α = θ, the curve must cross the line at

some point (θ∗,θ∗), implying χ(θ∗) = θ∗. Then û∗ =
(cosθ∗,sinθ∗)T is in the same direction as φ(û∗), and

thus, satisfies (48).

Since ‖Σ−1(−p)‖ > 1, it follows from Theorem 12 that

there also exists a unique û that is in the direction of

−Σû−p, and therefore also satisfies (48).

Moving on, we now prove part (v). Suppose ‖Σ−1p‖ ≤
1. The origin must be inside or on the image ellipse E . Also,

suppose that û satisfies (48) with Σû+ p 6= 000, and without

loss of generality, is in the first quadrant. Fig. 12(d) displays

û on the unit circle C . Let Ẽ be the image of C under the

mapping û 7→ Σû. Since Σ is diagonal and positive definite,

Σû must be in the first quadrant on Ẽ . Therefore, the polar

angles of û and Σû has a difference in the range (− π
2
, π

2
).

The lines ℓ1 and ℓ2 are tangent to C and Ẽ at û and Σû,

respectively. They can be aligned with each other under a

rotation in the range (− π
2
, π

2
) as well.

Since û×(Σû+p) = 000, the non-zero vector Σû+p is ei-

ther in the direction of û or in its opposite direction. Suppose

9Note that φ(û1), p, and φ(û2) are collinear because û1, the origin o, and

û2 are, given that an affine mapping preserves collinearity.

that û and Σû+ p, the vector from −p to Σû, are in oppo-

site directions. We will arrive at a contradiction in two steps

below.

1. The points −p and Σû must be on different sides of ℓ2.

Suppose that instead −p is either on the same side of ℓ2

with Ẽ or on ℓ2. Then, Σû+p can be rotated through an

angle in the range [− π
2
, π

2
] to be aligned with the line ℓ2.

Meanwhile, û can be rotated through either − π
2

or π
2

to

be aligned with the line ℓ1. These two lines differ by an

rotation in (− π
2
, π

2
). The difference between the polar

angles of û and Σû+ p must be in the range (−π,π).
Because the range is an open interval, these two vectors

cannot be opposite to each other. Hence a contradiction.

So −p and Σû are on different sides of ℓ2.

2. Consequently,−p must be outside the ellipse Ẽ . Equiv-

alently, the origin (translation of the point−p by p) must

be outside the image ellipse E (translation of Ẽ by p).

But this is impossible under ‖Σ−1p‖ ≤ 1 as argued ear-

lier. Another contradiction. The vectors û and Σû+p

cannot oppose each other.

Finally, we prove part (vi). The existence of a unit vec-

tor û in the direction of Σu+p follows from (i), (ii) (either

(0,1) or (0,−1)), (iii) (either (1,0) or (−1,0)), and Case 3 of

(iv). Under ‖Σ−1(−p)‖ > 1, Theorem 12, to be established

in Appendix B, will imply that there exists a unique û in the

direction of −Σû−p.

Appendix B: Centrifugal Invariant Direction

Let Σ be a diagonal 2× 2 matrix with positive diago-

nal entries, and p be a vector such that ‖Σ−1p‖ > 1. In this

appendix, we will prove that there exists a unique unit vec-

tor û ∈ R
2 such that û ∼ −Σû+p (that is, both vectors are

non-zero and in the same direction).

Let us introduce two mappings over R2:

α : u 7→w =−Σu and β : w 7→ s = w+p.

Clearly, (β ◦α)(û) = −Σû+ p. As shown in Fig. 13, due

to the negative definiteness of −Σ, α maps the unit circle C

to an ellipse E1 centered at p, symmetric about the x- and

y-axes, and with semimajor and semiminor axes equal to the

diagonal elements of Σ. A point on C is mapped to one on

the ellipse in the opposite quadrant. Under β, the ellipse E1

is translated by p to become the ellipse E2 centered at p. We

reason that E2 does not contain the origin as follows. This

ellipse contains the origin if and only if the image ellipse E3

of C under the mapping u 7→ −u+Σ−1p does. But E3 does

not because ‖Σ−1p‖> 1.

As shown in Fig. 14(a), from the origin o there are two

rays tangent to E2 at sl and sr, respectively. The rays form the

left and right edges (viewed from o) of a cone in which E2

is inscribed. Clearly, the apex angle of the cone is less than

π because the ellipse is convex and the origin o lies outside

of it. The points sl and sr split the ellipse into two arcs:

E+
2 inside the triangle △oslsr (including sl and sr), and E−2

outside it.
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Fig. 13. Unit circle C maps to an ellipse E2 centered at p under β◦α.
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û∗, û1
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Fig. 14. Inverse mapping sequence α−1 ◦β−1.

Lemma 9. If a unit vector û∗ satisfies û∗ ∼ (β ◦ α)(û∗),
then (β◦α)(û∗) must lie on the elliptic arc E+

2 .

Proof. Suppose û∗∼ (β◦α)(û∗). The line through the origin

o in the direction of û∗ intersects the ellipse E2 at up to two

points s1 and s2. See Fig. 14(a). If s1 = s2, then both must

coincide with (β◦α)(û∗), which must be either sl or sr, and

thus lies on E+
2 . The statement is thus true.

Assume s1 6= s2. Permute the indices such that s1 is

closer to o than s2. Either s1 or s2 must be (β ◦α)(û∗). Let

s∗ be the point on E2 such that s∗− p ∼ û∗, and ℓ the line

through p and s∗ (see Fig. 14(a)). The points s1 and s2 lie

either on the side of ℓ containing sl or on the other side of

the line containing sr. Without loss of generality, we assume

that s1, s2, sl are on the same side of ℓ. A clockwise traversal

of the half ellipse on this side visits s1, sl , s2, and s∗ sequen-

tially.

The inverse mapping β−1 takes E2 back to E1, as shown

in Fig. 14(b), with p translated to the origin o, and s1, sl , s2,

and s∗ to w1, wl , w2, and w∗, respectively. It follows from

s∗−p ∼ û∗ that w∗ ∼ û∗. The order of traversal of the four

points is preserved under the translation.

The image line β−1(ℓ) splits the ellipse E1 into two

halves. The half containing w1, wl , w2, and w∗ is mapped

under α−1 to a half unit circle shown in Fig. 14(c). Be-

cause α is defined by the negative definite matrix −Σ, a

clockwise traversal along the half circle starting at û∗ will

visit û1 = α−1(w1), ûl = α−1(wl), and û2 = α−1(w2), se-

quentially. Since û1 6= û2 and both on the same half circle

starting at û∗ (coinciding with either (β ◦α)−1(s1) = û1 or

(β◦α)−1(s2) = û2), the only possibility is û∗ = û1, namely,

(β◦α)(û∗) = s1, which lies on the elliptic arc E+
1 .

In Fig. 15(a), picture a point s moving on the arc E+
2

from sl to sr. The unit vector ŝ = s/‖s‖ traces out an arc A

on the unit circle C from ŝl = sl/‖sl‖ to ŝr = sr/‖sr‖ (see

Fig. 15(b)). This arc is less than half of the circle. Its image

F = (β ◦α)(A) is accordingly less than half of E2. Let ql

and qr be the endpoints of F such that ql = (β ◦α)(ŝl) and

qr = (β◦α)(ŝr).

Lemma 10. There exists a unique unit vector û such that

û∼−Σû+p if and only if E+
2 ∩F 6= /0.

Proof. (⇒) Suppose there exists a unique û with û∼−Σû+
p. Since all the points on the ellipse E2, including −Σû+p,

must lie inside the cone positively spanned by the vectors
−→
osl

and
−→
osr, û must be on the circular arc A shown in Fig. 15(b).

Let s = −Σû + p. Apparently, s is on F = (β ◦α)(A) in

Fig. 15(c). Meanwhile, it follows from Lemma 9 that s is

also on E+
2 . Thus, E+

2 and F share at least one point s.

(⇐) Suppose E+
2 ∩F 6= /0. Picture a point s moving

counterclockwise from sl to sr on E+
2 (cf. Fig. 15(a)). Si-

multaneously, the point q = (β ◦α)(ŝ), where ŝ = s/‖s‖, is
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ŝr sr

sl

E2

(a) (b) (c)

Fig. 15. The unit vectors ŝl and ŝr in the directions from o to the points of tangency sl and sr on E2 delimits an arc A on the unit circle that

contains the point û with û∼ (β◦α)û, if it exists.
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Fig. 16. Four possible cases (a)–(d) of overlapping between the el-

liptic segments E+
2 between sl and sr , and A between ql and qr .

moving clockwise from ql to qr due to the negative definite-

ness of −Σ. The two moving points will reach sr and qr at

the same time. Both arcs E+
2 and F traversed by s and q,

respectively, are less than half of the ellipse. If s meets q

during the movement, then s = q = (β◦α)(ŝ), which implies

ŝ∼ (β◦α)ŝ. We consider four cases of E+
2 ∩F 6= /0:

Case 1 F ⊆E+
2 (Fig. 16(a)) The counterclockwise moving

s needs to cross qr and then ql before reaching sr. At

the time of s crossing qr, q must have not reached qr

yet. Therefore, s will meet the clockwise moving q on

the arc F between ql and qr.

Case 2 F ⊃E+
2 (Fig. 16(b)) Similarly, the clockwise mov-

ing point q needs to cross sr and sl sequentially before

reaching qr. Therefore, it will meet the counterclock-

wise moving s on the arc E+
2 between sl and sr.

Case 3 ql ∈ E+
2 but qr 6∈ E+

2 (Fig. 16(c)) The moving

points s and q need to cross ql and sl to reach sr and

qr, respectively. They will be moving toward each other

on the elliptic arc between ql and sl , and thus will even-

tually meet.

Case 4 ql 6∈E+
2 but qr ∈E+

2 (Fig. 16(d)) Similarly, s and q

will be moving toward each other on the elliptic arc be-

tween sr and qr. They will cross qr and sr, respectively,

to reach sr and qr. Hence they will meet on the elliptic

arc between qr and sr as well.

In all the four cases above, after s and q meet, they will con-

tinue moving in opposite directions to traverse less than half

of the ellipse. Hence they will not meet again. The unique-

ness of û with û∼−Σû+p thus follows.

Lemma 11. The arcs E+
2 and F intersect.

Proof. Apply the inverse mapping β−1 to the plane contain-

ing E2. The origin and the tangency points sl , sr are trans-

lated to −p, wl = sl −p and wr = sr−p, respectively. The

ellipse E2 is translated back to E1, the image of the unit

circle C under α, its arc E+
2 translated to E+

1 , the arc be-

tween wl and wr, and F to α(A). We need only establish

E+
1 ∩α(A) 6= /0.

The arc A is Less than half of the unit circle C centered

at the origin. It is contained in either two adjacent quadrants,

or in just one quadrant.

Case 1 The arc A is contained in two adjacent quadrants.

Then, it must contain a half coordinate axis, say, with-

out loss of generality, the negative y-axis as shown in

Fig. 17(a). Its left endpoint ŝl and the right endpoint ŝr

(viewed from the origin) must be in the quadrants IV

and III, respectively. Their image points α(ŝl) = −Σŝl

and α(ŝr) =−Σŝr, given the negative definiteness of the

diagonal matrix −Σ, must lie inside quadrants II and I

opposite to quadrants IV and III, respectively. Hence

the arc α(A) contains the point of E1 on the positive

y-axis. Meanwhile, the tangent line through −p to E1

in the direction of ŝl (which is in quadrant IV) must be

incident at a point on the ellipse in quadrant I. This is

the right endpoint wl of E+
1 . Similarly, we infer that the

left endpoint wr must be in quadrant II. Thus, the arc

E+
1 also contains the point of E1 on the positive y-axis,

establishing E+
1 ∩α(A) 6= /0.

Case 2 The arc A is contained in one quadrant, say, quad-

rant IV, as shown in Fig. 17(b). Its image α(A) must be

inside quadrant II. Similarly, based on the geometry of

an ellipse we infer that the points of tangency wl and wr

must lie inside quadrants I and III, respectively. There-

fore, the elliptic arc E+
1 between wl and wr contains the

quarter of the ellipse inside quadrant II, which contains

α(A). We have E+
1 ∩α(A) = α(A) 6= /0.
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Fig. 17. The arc A is contained in either (a) two adjacent quadrants

or (b) just one quadrant.

Lemmas 10 and 11 lead to the following theorem.

Theorem 12. Let Σ be a diagonal 2× 2 matrix with posi-

tive diagonal elements, and p ∈ R
2 such that ‖Σ−1p‖ > 1.

Then there exists a unique unit vector û ∈ R
2 such that

û∼−Σû+p.
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Mathématiques et Astronomiques, deuxième série, tome
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