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Abstract 

The motivation behind the work in very-high-level languages is to ease the programming task by pro- 
viding the programmer with a language containing primitives or abstractions suitable to his problem area. 
The programmer is then able to spend his effort in the right place; he concentrates on solving his problem, 
and the resulting program will be more reliable as a result. Clearly, this is a worthwhile goal. 

Unfortunately, it is very difficult for a designer to select in advance all the abstractions which the 
users of his language might need. If a language is to be used at all, it is likely to be used to solve 
problems which its designer did not envision, and for which the abstractions embedded in the language are 
not sufficient. 

This paper presents an approach which allows the set of built-in abstractions to be augmented when the 
need for a new data abstraction is discovered. This approach to the handling of abstraction is an outgrowth 
of work on designing a language for structured programming. Relevant aspects of this language are described, 
and examples of the use and definitions of abstractions are given. 

Introduction 

This paper describes an approach to computer 
representation of abstraction. The approach, de- 
veloped while designing a language to support struc- 
tured programming, is also relevant to work in very- 
high-level languages. We begin by explaining its 
relevance and by comparing work in structured pro- 
gramming and very-high-level languages. 

The purpose of structured programming is to 
enhance the reliability and understandability of 
programs. Very-high-level languages, while pri- 
marily intended to increase prograrmner productivity 
by easing the programmer's task, can also be ex- 
pected to enhance the reliability and understand- 
ability of code. Thus, similar benefits can be ex- 
pected from work in the two areas. 

Work in the two areas, however, proceeds along 
different lines. A very-high-level language at- 
tempts to present the user with the abstractions 
(operations, data structures, and control struc- 
tures) useful to his application area. The user 
can use these abstractions without being concerned 
with how they are implemented -- he is only con- 
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cerned with what they do. He is thus able to ig- 
nore details not relevant to his application area, 
and to concentrate on solving his problem. 

Structured programming attempts to impose a 
discipline on the programming task so that the re- 
suiting programs are '~ell-structured." In this 
discipline, a problem is solved by means of a pro- 
cess of successive decomposition. The first step 
is to write a program which solves the problem but 
which runs on an abstract machine, one which pro- 
vides just those data objects and operations which 
are ideally suited to solving the problem. Some or 
all of those data objects and operations are truly 
abstract, i.e., not present as primitives in the 
programming language being used. We will, for the 
present, group them loosely together under the term 
"abstraction." 

The programmer is initially concerned with 
satisfying himself (or proving) that his program 
correctly solves the problem. In this analysis he 
is concerned with the way his program makes use of 
the abstractions, but not with any details of how 
those abstractions may be realized. When he is 
satisfied with the correctness of his program, he 
turns his attention to the abstractions it uses. 
Each abstraction represents a new problem, requiring 
additional programs for its solution. The new pro- 
gram may also be written to run on an abstract 
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machine, introducing further abstractions. The 
original problem is completely solved when all ab- 
stractions generated in the course of constructing 
the progrm~ have been realized by further programs. 

It is clear now that the approaches of very- 
high-level languages and structured programming are 
related to one another: each is based on the idea 
of making use of those abstractions which are cor- 
rect for the problem being solved. Furthermore, the 
rationale for using the abstractions is the same in 
both approaches: to free the programmer from con- 
cern with details not relevant to the problem he is 
solving. 

In very-high-level languages, the designers 
attempt to identify the set of useful abstractions 
in advance. A structured programming language, on 
the other hand, contains no preconceived notions 
about the particular set of useful abstractions, 
but, instead, must provide a mechanism whereby the 
language can be extended to contain the abstractions 
which the user requires. A language containing such 
a mechanism can be viewed as a general-purpose, in- 
definitely-high-level language. 

In this paper we describe an approach to ab- 
straction which permits the set of built-in ab- 
stractions to be augmented when the need for new 
abstractions is discovered. We begin by analyzing 
the abstractions used in writing programs, and iden- 
tify the need for data abstractions. A language 
supporting the use and definition of data abstrac- 
tions is informally described, and some example pro- 
grams are given. Remaining sections of the paper 
discuss the relationship of the approach to previous 
work, and some aspects of the implementation of the 
language. 

Th___~eMeanin~ of Abstraction 

The description of structured programming given 
in the preceding section is vague because it is 
couched in such undefined terms as "abstraction" and 
"abstract machine." In this section we analyze the 
meaning of "abstraction" to determine what kinds of 
abstraction a prog~armner requires, and how a struc- 
tured programming language can support these re- 
quirements. 

What we desire from an abstraction is a mech- 
anism which permits the expression of relevant de- 
tails and the suppression of irrelevant details. In 
the case of programming, the use which my be made 
of an abstraction is relevant; the way in which the 
abstraction is implemented is irrelevant. If we 
consider conventional programming languages, we dis- 
cover that they offer a powerful aid to abstraction: 
the function or procedure. When a programmer makes 
use of a procedure, he is (or should be) concerned 
only with what it does -- what function it provides 
for him. He is not concerned with the algorithm 
executed by the procedure. In addition, procedures 
provide a means of decomposing a problem -- per- 
forming part of the progran~nlng task inside a pro- 
cedure, and another part in the program which calls 
the procedure. Thus, the existence of procedures 
goes quite far toward capturing the meaning of ab- 
straction. 

Unfortunately, procedures alone do not provide 

a sufficiently rich vocabulary of abstractions. The 
abstract data objects and control structures of the 
abstract machine mentioned above are not accurately 
represented by independent procedures. Because we 
are considering abstraction in the context of struc- 
tured prograrmning, we will omit discussion of con- 
trol abstractions. 

This leads us to the concept of abstract data 
type which is central to the design of the lan- 
guage. An abstract data type defines a class of 
abstract objects which is completely characterized 
by the operations available on those objects. This 
means that an abstract data type can be defined by 
defining the characterizing operations for that 
type. 

We believe that the above concept captures the 
fundamental properties of abstract objects. When a 
programmer makes use of an abstract data object, he 
is concerned only with the behavior which that ob- 
ject exhibits but not with any details of how that 
behavior is achieved by means of an implementation. 
The behavior of an object is captured by the set of 
characterizing operations. Implementation informa- 
tion, such as how the object is represented in stor- 
age, is only needed when defining how the character- 
izing operations are to be implemented. The user of 
the object is not required to know or supply this 
information. 

Abstract types are intended to be very much 
like the built-ln types provided by a progran~ning 
language. The user of a built-in type, such as 
integer or integer array, is only concerned with 
creating objects of that type and then performing 
operations on them. He is not (usually) concerned 
with how the data objects are represented, and he 
views the operations on the objects as indivisible 
and atomic when in fact several machine instructions 
may be required to perform them. In addition~ he is 
not (in general) permitted to decompose the objects. 
Consider, for example, the built-in type integer. 
A programmer wants to declare objects of type 
integer and to perform the usual arithmetic opera- 
tions on them. He is usually not interested in an 
integer object as a bit string, and cannot make use 
of the format of the bits within a computer word. 
Also, he would like the language to protect him 
from foolish misuses of types (e.g., adding an in- 
teger to a character) either by treating such a 
thing as an error (strong typing), or by some sort 
of automatic type conversion. 

In the case of a built-in data type, the pro- 
gran~ner is making use of a concept or abstraction 
which is realized at a lower level of detail -- the 
prograrmning language itself and its compiler. Sim- 
ilarly, an abstract data type is used at one level 
and realized at a lower level, but the lower level 
does not come into existence automatically by being 
part of the language, instead, an abstract data 
type is realized by writing a special kind of pro- 
gram, called an operation cluster, or cluster for 
short, which defines the type in terms of the opera- 
tions which can be performed on it. The language 
facilitates this activity by allowing the use of an 
abstract data type without requiring its on-the-spot 
definition. The language processor supports ab- 
stract data types by building links between the use 
of a type and its definition (which may be provided 
either earlier or later),and by enforcing the view 
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of a data type as equivalent to a set of operations 
by a very strong form of data typing. 

We observe that a consequence of the concept of 
abstract data types is that most of the abstract op- 
erations in a program will belong to the sets of op- 
erations characterizing abstract types. We will use 
the term functional abstraction to denote those ab- 
stract operations which do not belong to any char- 
acterizing set. A functional abstraction will be 
implemented as a composition of the characterizing 
operations of one or more data types, and will be 
supported in the usual way by a procedure. A sine 
routine might be an example of such a functional ab- 
straction. The implementation of the sine routine 
could be a Taylor series expansion expressed in 
terms of characterizing operations of the type real. 

The Prograrmnin~ LanguaEe 

We now give an informal description of a pro- 
gramming language which permits the use and defini- 
tion of abstract data types. This language is a 
simplified version of a structured prograrmning lan- 
guage that is under development at M.I.T. It is 
derived primarily from PASCAL I and is conventional 
in many respects, but it differs from conventional 
languages in several important ways. 

The language provides tw____oo forms of modules cor- 
responding to the two forms of abstraction: pro- 
cedures, which support functional abstractions, and 
operation clusters, which support abstract data 
types. Each module is translated (compiled) by it- 
self. 

The language has no free variables in the con- 
ventional sense. Within a module, the only names 
that are free, and therefore are defined externally, 
are the names of other modules; that is, cluster 
names and procedure names. These names are bound at 
translation time by means of a directory of module 
names created by the programmer expressly for this 
purpose. No names remain to be bound in the trans- 
lated module. 

The language has only structured control. 
There are no ~oto's or labels, but merely variants 
of concatenation, selection (if, case) and iteration 
(while) constructions. A structured error-handling 
mechanism is under development. In this paper, it 
is represented only by the presence of the reserved 
word error. 

The way in which the language permits the use 
and definition of abstract data types can best be 
illustrated by an example. We have chosen the fol- 
lowing problem: Write a program, Polish_gen, which 
will translate from an infix language to a Polish 
post-fix language. Polish_gen is to be a general- 
purpose program which makes no assumptions about 
input or output devices (or files). It makes only 
the following assumptions about the input language: 

i. The input language has an operator prece- 
dence grammar. 

2. A symbol of the input language is either an 
arbitrary string of letters and ntunhers, or 
a single, non-alphanumeric character;blanks 
terminate symbols but are otherwise ignored. 

For example, if Polish_gen received the string 

a+b* (c+d) 

as input, it would produce the string 

abc d+*+ 

as output. We have chosen this problem as our ex- 
ample because the problem and its solution are 
familiar to people interested in programming lan- 
guages, and the problem is sufficiently complex to 
illustrate the use of many abstractions. 

Usin~ Abstract Data Types 

The procedure Polish_gen, shown in Figure i, 
performs the translation described above. It takes 
three arguments: input, an object of abstract type 
infile which holds the sentence of the input lan- 
guage; output, an object of abstract type outfile 
which will accept a sentence of the output language; 
and g, an object of abstract type grammar which can 
be used to recognize symbols of the input language 
and determine their precedence relations. In addi- 
tion, Polish_gen makes use of local variables of ab- 
stract types stack and token. Note that all the 
data-type-names appear free in Polish_gen, as does 
"scan," which names the single functional abstrac- 
tion used by Polish_gen. 

The language uses the same syntax to declare 
variables of abstract data type as to declare vari- 
ables of primitive type. The syntax distinguishes 
between declarations which involve the creation of 
an object and those which do not. For example, 

t : token 

states that t is the name of a variable which holds 
an object of abstract type token, but that no token 
object is to be 6reated, so that the value of t is 
initially undefined. Thus the variable t is being 

Polish_Een: procedure(input: infile, 
output: outfile, g: grammar); 

t : token; 
mustscan: boolean; 
s : stack(token) ; 

mustscan := true; 
stack$push (s, token (g, granmmr$eof (g)) ) ; 
while-~stack$empty (s) d__oo 

if mustscan 
then t := scan(input, g) 
else mustscan := true; 

if token$is__op(t) 
then 

case tokenSprec_rel(staekStop(s), t) of 
'~":: stackSpush(s, t); 
"-"'- .." stackSerasetop(s); 
'~":: begin 

outfile$out_str(output, 
tokenSsymbol(stackSpop(s)~; 

mustscan := false; 
end 

otherwise error; 
else outfile$out_str(output, tokenSsymbol(t)); 

end 
outfile$close(output); 
return; 

end Polish_gen 

Figure i 
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declared in the same way as mustsean in 

mustscan: boolean 

The presence of parentheses following the type 
name signals creation of an object. For example, 

s: stack(token) 

states that s is the name of a variable which holds 
an object of abstract type stack, and a stack ob- 
ject is to be created and stored in s. Information 
required for creating the object is passed in a pa- 
rameter list; in the example, the only parameter, to- 
ken, defines the type of element which may be placed 
on the stack s. The declaration of a stack is sim- 
ilar to an array declaration, such as "array[l..10] 
of characters," in that they both require the type 
of elements to be specified. 

The language is strongly typed; thus there are 
only three ways in which an abstract object can be 
used: 

i. An abstract object may be operated upon by 
the operations which define its abstract 
type. 

2. An abstract object may be passed as a pa- 
rameter to a procedure. In this case, the 
type of the actual argument passed by the 
calling procedure must be identical to the 
type of the corresponding formal parameter 
in the called procedure. 

3. An abstract object may be assigned to a 
variable, but only if the variable is de- 
clared to hold objects of that type. 

Application of a defining operation to an ab- 
stract object is indicated by an operation call in 
which a compound name is used: for example, 

granmmr$eof(g) 
stack$push(s, t) 
token$is op(t) 

The first part of the compound name identifies the 
abstract type to which the operation belongs while 
the second component identifies the operation. An 
operation call will always have at least one 
parameter -- an object of the abstract type to 
which the operation belongs. 

There are several reasons why the type-name is 
included in the operation call. First, since an op- 
eration call may have several parameters of differ- 
ent abstract types, the absence of the type-name 
may lead to an ambiguity as to which object is ac- 
tually being operated on. Second, use of the com- 
pound name permits different data types to use the 
same names for operations without any clash of 
identifiers arising. Third, we believe that the 
type-name prefix will enhance the understandability 
of programs, once the reader is used to the nota- 
tion. Not only is the type of the operation im- 
mediately apparent, but operation calls are clearly 
distinguished from procedure calls. 

The statement 

t := scan(input, g) 

illustrates both passing abstract objects as param- 
eters, and assigning an abstract object to a vari- 
able. The procedure scan, shown in Figure 2, ex- 
pects objects of type infile and grammar as its 
arguments, and returns an object of type token, 

scan: procedure(input: infile, g: granmmr) 
returns token; 

newsymb: 9trine; 
ch: char; 

ch := infile$get(input) 
while ch=" " d__oo ch := infile$get(input); end 
if infileSeof(input) 

then return token(g, granmmrSeof(g)); 
newsymb :=unit string(ch); 
i falphanumeric(ch) then 

while alphanumeri¢(infile$peek(input)) d__oo 
newsymb := newsymb concat infile$get(input); 

en__~d 
return token(g, newsymb); 

end scan 
Figure 2 

which is then stored in the token variable t. 

We have explained that objects can be created 
in conjunction with variable declaration. It is 
also possible for objects to be created independent- 
ly of variable declaration. Object creation is 
specified (whether inside a declaration or not) by 
the appearance of the type-name followed by paren- 
theses. For example, in the last line of scan 

token(g, newsymb) 

states that a token object, representing the symbol 
just scanned, is to be created; the information re- 
quired to create the object (the grammar and the 
symbol just scanned) is passed in a parameter list. 

A brief description of the logic of Polish_gen 
can now be given. Pollsh__gen uses the functional 
abstraction scan to obtain a symbol of the grarmnar 
from the input string. Scan returns the symbol in 
the form of a token -- a type introduced to provide 
efficient execution without revealing information 
about how the grammar represents symbols. 
Polish_.gen stores the token containing the newly 
scanned symbol in variable t. If t holds a token 
representing an identifier (like "a") rather than 
an operator (like "+"), that identifier is put in 
the output file immediately. Otherwise, the token 
on top of the stack is compared with t to determine 
the precedence relation between them. If the rela- 
tion is '~", t is pushed on the stack (e.g., 
"+" < "*"). If the relation is "=", both t and the 
top-of-stack token are discarded (e.g., "("=")"), 
If the relation is '~", the operator held in the 
top-of-stack token is appended to the output file, 
exposing a new top-of-stack token. Since that op- 
erator token may have a higher precedence than t, 
the boolean variable mustscan is used to prevent a 
new symbol from being scanned and to insure the next 
comparison is with the current value of t. Because 
a grammar-dependent representation of the end of 
file symbol (grammar$eof(g)) is initially pushed 
onto the stack, the stack will become empty causing 
Polish__gen to complete only when a matching eof 
token is generated by exhausting the input. (We 
have made the simplifying assumption that the input 
is a legitimate sentence of the infix language.) 

The scan procedure obtains characters from the 
input file via the operations defining the abstract 
type infile. It makes use of the data types char 
and string, and operations on objects of these types. 
Although these types are shown as built-in, they 
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could easily have been abstract types instead. In 
that case, the built-in predicate alphanumeric~ for 
example, would have been expressed as 
char$alphanumeric. Only the syntax would change; 
the meaning and use of the types would be the same 
in either case. 

To sum up, Polish_gen makes use of five data 
abstractions, infile, outfile, granmmr, token and 
stack, plus one functional abstraction, scan. The 
power of the data abstractions is illustrated by 
the types infile and outfile, which are used to 
shield Polish__gen from any physical facts concerning 
its input and output, respectively. Polish gen does 
not know what input and output devices are being 
used, when the I/0 actually takes place, nor does it 
know how characters are represented on the devices. 
What it does know is just enough for its needs: For 
parameter output it knows how to add a string of 
characters (outfile$out_str) and how to signify that 
the output is complete (outfile$close). For param- 
eter input, it knows how to obtain the next char- 
acter (infileSget), how to look at the next char- 
acter without removing it from input (infileSpeek), 
and how to recognize the end of input (infileSeof). 
(Note that for scan to operate correctly, infile 
must provide a non-blank, non-alphanumeric character 
on any call on infileSget or infileSpeek after the 
end of file has been reached.) In every case its 
knowledge consists of the names of the operations 
which provide these services. 

Definin~ Abstract Data Types 

In this section, we describe the progran~ning 
object -- the operation cluster -- whose translation 
provides an implementation of a type. The cluster 
contains code implementing each of the character- 
izing operations and thereby embodies the idea that 
a data type is defined by a set of operations. 

As an example, consider the abstract data type 
stack used by Polish_gen. A cluster supporting 
stacks is shown in Figure 3. This cluster imple- 
ments a very general kind of stack object in which 
the type of the stack elements is not known in ad- 
vance. The cluster parameter element_type indicates 
the type of element a particular stack object is to 
contain. 

The first part of a cluster definition provides 
a very brief description of the interface which the 
cluster presents to its users. The cluster inter- 
face defines the name of the cluster, the parameters 
required to create an instance of the cluster (an 
object of the abstract type which the cluster imple- 
ments), and a list of the operations defining the 
type which the cluster implements, e.g., 

stack: cluster(element-type: type) 
i~s push, pop, top, erasetop, empty 

The use of the reserved word i~s underllnes the idea 
of a data type being characterized by a group of 
operations. 

The remainder of the cluster definition, de- 
scribing how the abstract type is actually supported, 
contains three parts: the object representation, 
the code to create objects and the operation defini- 
tions. 

stack: cluster(element_type: type) 
i__ss push, pop, top, erasetop, empty ; 

rep(type_param: type) = (tp: integer; 
e type: type; 
stk: array[l..] 

o_ff type_param; 

c r e a t e  

s: rep(element_type); 

s.tp := O; 
s.e_type := element_type; 
return s; 
en___dd 

push: operation(s: rep, v: s.e_type); 

s.tp := s.tp+l; 
s.stk[s.tp] := v; 
r e tur n; 
end 

pop: operation(s: rep) returns s.e type; 

i_~f s.tp=0 then error; 
s.tp := s.tp-l; 
return s.stk[s.tp+l]; 
en_~d 

top: operation(s: rep) returns s.e_type; 

i__ff s.tp = 0 then error; 
return s.stk[s.tp]; 
end 

erasetop: operation(s: rep); 

i_~f s.tp = 0 then error; 
s.tp := s.tp-l; 
return; 
end 

empty: operatlon(s: rep) returns boolean; 

return s.tp = O; 
en__d 

en_~d stack 

Figure 3 

Ob~ec t Representation. Users of the abstract 
data type view objects of that type as indivisible 
entities. Inside the cluster, however, objects are 
viewed as decomposable into elements of more primi- 
tive type. The rep description 

rep{((rep-parameters>)} = (type-definition) 

defines a new type, denoted by the reserved word 
rep, which is accessible only within the cluster and 
describes how objects are viewed there. The 
(type-definition) defines a template which permits 
objects of that type to be built and decomposed. In 
general, it will make use of the data structuring 
methods provided by the language: arrays (possibly 
unbounded) or PASCAL records. The optional ("[}") 
(rep-parameters) make it possible to delay speci- 
fying some aspects of the <type definition> until an 
instance of the rep is created. Consider the rep 
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description of the stack cluster: 

rep(type__param: type) = (tp: integer; e_type: type; 
stk: array[l..] of type_param) 

The <type-definition> specifies that a stack object 
is represented by a record containing three compo- 
nents named tp, stk, and e type. The parameter, 
type_param, specifies the type of element which may 
be stored in the unbounded array named stk which 
will hold the elements pushed onto a stack object. 
This same type will also be stored in the e_type 
component, and is used for type checking as will be 
described below. The tp component holds the index 
of the topmost element of the stack. 

Object Creation. The reserved word create 
marks the create__code~ the code to be executed when 
an object of the abstract type is created. The 
cluster may be viewed as a procedure whose procedure 
body is the create-code. When a user indicates that 
an object of abstract type is to be created, for ex- 
ample, 

s: stack(token) 

one thing that happens (at execution time) is a call 
on the create-code, causing that procedure body to 
be executed. The parameters of the cluster are ac- 
tually parameters of the create-code. Since free 
variables, other than references to externally de- 
fined modules~ are not provided, these parameters 
are not accessible either to the operations or to 
the <type definition> in the rep. Therefore, any 
information about the parameters that is to be saved 
must be explicitly inserted into each instance of 
the rep. 

The code shown in the stack cluster is typical 
of create-code. First, an object of type rep is 
created; that is, space is allocated to hold the ob- 
ject as defined by the rep. Then, some initial val- 
ues are stored in the object. Finally, the object 
is returned to the caller. When the object is re- 
turned, its type is changed from type rep to the ab- 
stract type defined by the cluster. 

Operations. The remainder of the cluster con- 
sists of a group of operation definitions, which 
provide implementations of the permissible operations 
on the data type. Operation definitions are like or- 
dinary procedure definitions except that they have ac- 
cess to the rep of the cluster, which permits them 
to decompose objects of the cluster type. Operations 
are not themselves modules; they will be accepted by 
the translator only as part of a cluster. 

Operations always have at least one parameter -- 
of type rep. Because the cluster may simultaneously 
support many objects of its defined type, this pa- 
rameter tells the operation the particular object on 
which to operate. Note that the type of this pa- 
rameter will change from the abstract type to type 
rep as it is passed between the caller and the op- 
eration. 

Because the language is strongly typed, the 
type of objects pushed on a given stack must be 
checked for consistency with the type of elements 
the stack can hold. This consistency requirement is 
specified syntactically by declaring that the type 
of the second argument of push is to be the same as 
the e_type component of the re_9_E of the stack object 
which is the first argument of push. The translator 

can generate code to verify that the types match at 
run time and to raise an error if they don't. 

Controllin~ the Use of Information 

Abstract data types were introduced as a way of 
freeing a progran~ner from concern about irrelevant 
details in his use of data abstractions. But in 
fact we have gone further than that. Because the 
language is strongly typed, the user is unable to 
make use of any implementation details. In this 
section we discuss the benefits that accrue from 
this limitation: the programs which result are more 
modular, and easier to understand, modify~ maintain 
and prove correct. 

Token is a good example of a type created to 
control access to implementation details. Instead 
of introducing a new type, Polish__gen could have 
been written to accept strings from scan, to store 
strings on the stack, and to compare strings to de- 
termine the precedence relation (via an appropriate 
operation granmmrSprec_rel). Such a solution would 
be inefficient. Since the precedence matrix can be 
indexed by the positions of the operators in the re- 
served word table of the gra~mmr, an efficient im- 
plementation would look up the character string only 
once to find out if it is an operator symbol and, if 
so, use the index of the operator in Polish_gen. 

This, however, exposes information about the 
representation of the grarm~ar. If Polish__gen or 
some other module which uses the grammar makes use 
of this information, normal maintenance and modifi- 
cation of the grammar cluster can introduce errors 
which are difficult to track down. 2 Therefore, the 
new type, token~ is introduced to limit the distri- 
bution of information about how the grammar is rep- 
resented. Now a redefinition of the grammar cluster 
can affect only the token cluster -- which makes no 
assumptions about the index it receives from gram- 
mar. If an error occurs while looking up a prece- 
dence relation (like an index out of bounds), the 
error can only have been caused by something in the 
token or grammar cluster. 

Actually, the selection of an implementation of 
tokens -- for example, whether a token is represented 
by an integer or a character string -- involves a de- 
sign decision. This decision can be delayed until 
the cluster for tokens is defined and need not be 
made during the coding of Polish_gen. Therefore, 
the programming of Polish_gen can be done according 
to one of Dijkstra's programming principles: build 
the program one decision at a time. 3 Following this 
principle leads to a simplified logic for Polish_gen, 
making it easier to understand and maintain. 

Making the representation inaccessible also re- 
suits in a program which is easier to prove correct. 
The proof of a program is divided into two parts: 
a proof that the cluster correctly implements the 
type, and a proof that the program using the type is 
correct. Only in the former proof need details of 
the implementation of type objects be considered; the 
latter proof is based only on the abstract properties 
of the types, which may be expressed in terms of re- 
lations among the characterizing operations for each 
type. 
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Relationship to Previous Work 

Much work has been done in the area of creating 
suitable mechanisms for defining data types. There 
is no hope of surveying all that work here, nor is 
it all relevant to this paper. In this section we 
outline the areas of work that are most closely re- 
lated to clusters in that they provide some tools 
for defining abstract data types, and we discuss 
how the cluster approach differs from that work. 
The related work can be roughly divided into three 
categories: extensible languages, implementation 
specifications for a set of standard abstract op- 
erators, and S~67class definitions. 

Extensible Languages 

Much of the work and much of the success with 
extensible languages 4 has been in the area of data 
type definition. This work, however, has been pri- 
marily oriented toward defining representations 
rather than abstract types. New data representa- 
tions, or modes as they are frequently called, are 
created by constructing the representation in terms 
of existing modes using the primitive mode construc- 
tion facilities of the language. Mode construction 
facilities provided by an extensible language typi- 
cally include mechanisms for defining pointers to 
objects, for defining unions of distinct mode clas- 
ses, and for constructing aggregates (arrays and 
records) of objects. These correspond closely to 
the facilities used in this paper to define reps. 
The use of these mode definition mechanisms implies 
the definition of a set of constructors, selectors 
and predicates which may be applied to objects of 
the mode being defined. In some languages, the mode 
definitions may allow this set of operations to be 
augmented by certain operations, such as assignment, 
which are expressly provided for in the language. 

The main problem with extensible languages is 
that they do not encourage the use of data abstrac- 
tions. It is, in general, impossible to define all 
the operations characterizing an abstract data type 
within the mode definition. As we noted, only the 
representation of a data type is defined using the 
mode extension mechanism. Any abstract operation 
which is not equivalent to a constructor, selector 
or predicate for the representation must be defined 
outside the mode definition by a procedure or macro 
which can be made to appear like an operator by 
using the syntax extension facility. Therefore, a 
user must learn two different mechanisms; and the 
definition, instead of being collected in one place, 
as it is in an operation cluster, is split into dis- 
tinct parts. Furthermore, it is difficult to re- 
strict access to the representation solely to the 
characterizing operations of the abstract data type. 

Standard Abstract Operations 

The work derived from the earlier work of 
Mealy 5 and Balzer 6 is much closer in spirit to the 
approach taken here. Mealy establfshed the view 
that a data collection is a map from a set of se- 
lectors to a set of values, and that operations on 
data collections are either transformations on the 
map or uses of the map to access elements. This 
view has led to attempts to standardize a set of ab- 
stract operators for data collections. For example, 
Balzer proposed a particular abstraction for such 
collections which definesa set of four abstract op- 
erators to create, access, modify, and destroy ab- 

stract data collections. The user would define a 
particular collection by specifying how each ab- 
stract operation was to be implemented. This work 
has been extended (e.g., Earley7), but its primary 
emphasis has remained on defining a standard set of 
abstract operations. More complex operations are 
defined as procedures written in terms of these ab- 
stract operations. 

Although it is useful to distinguish some ab- 
stract operations, such as "create," which have a 
high probability of being applicable to every ab- 
stract data type, it seems unreasonable to expect 
that a predetermined set of operations will suffice 
to manipulate every abstract data object. Therefore, 
leaving the selection of the operations to the crea- 
tor of the type, as is done with operation clusters, 
provides a more closely tailored abstraction. 

SIMULA Classes 

The language which most closely resembles, in 
form, the language presented here is SIMULA 67. 8 
SlMULA class definitions have many similarities with 
cluster definitions. There is, however, a very im- 
portant philosophical difference in these two lan- 
guages which leads to several important linguistic 
differences. The classes of SlMULA were designed to 
represent and provide full accessibility to data ob- 
jects. Every attribute and function in a class is 
accessible in the block in which the class definition 
is embedded. Therefore, the actual form of the rep- 
resentation is always known to the user. 

In contrast to this, the rep of a cluster is 
not accessible outside the cluster. Operations in 
the cluster provide the only way to access the con- 
tents of the rep and, even then, only a subset of 
the operations defined in the cluster may be extern- 
ally accessible. As a result of this philosophical 
difference, the mechanisms for referencing data, the 
use of non-local variable references, and the use of 
blocks and block structuring are quite different in 
the two languages. 

Implementation Considerations 

Most aspects of the implementation of clusters 
will be handled in a conventional manner. There 
are, however, several aspects of the implementation 
which deserve special mention because they are non- 
standard or have a significant impact on the prac- 
ticality of using clusters to represent abstract 
data. 

Modules and Module-Names 

The compiler accepts a module as input. A 
module will usually be a cluster, but will some- 
times be a procedure like Polish_gen or scan. In 
the course of module translation, externally defined 
module-names, used to refer to procedures and data 
types, will be encountered. (Note that the refer- 
ences to operations on abstract data types do not 
introduce any additional external references because 
they are relative to the abstract type with which 
the operation name is prefixed.) 

When the compiler processes a module it builds 
or adds to a description-unit containing information 
about the module. Information held in the 
description-unit includes: 
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i. The location of the object code generated 
by the compiler. 

2. A description of the interface which the 
module makes available to its users. In 
particular, complete information about 
types of all parameters and values expected 
by the module is maintained. If the module 
is a cluster, information will be kept for 
each operation in the cluster. 

3. A list of all modules which use the module. 

Obviously much more information can be stored in the 
description-unit: debugging information in the form 
of symbol tables, etc., documentation information, 
specification information in the form of predicate 
calculus descriptions of input/output relationships, 
and even an analysis of the rationale for the decis- 
ions made in designing the module. 

The description unit is the focus for all in- 
formation about a module. It can be created when 
the module is processed or it can be created to be 
the target of references from other modules. Cre- 
ating a description unit before the module it rep- 
resents is processed supports top-down design and 
provides a simple way to define reeursion. Since 
the description unit holds a list of all uses of 
the module, the consistency of the uses and the def- 
inition can be checked when the module is actually 
defined and appropriate error messages can be gen- 
erated at that time. The actual definition can be 
delayed for quite some time as the description unit 
can be used to locate code to simulate the behavior 
of the module for debugging purposes. 

In the course of translating a module, the 
translator must give a meaning to each module name 
by binding it to the code of the corresponding mod- 
ule. This is done via the description unit. The 
translator obtains access to description units by 
means of a directory, containing a set of module- 
name/description unit pairs, which it receives as 
an argument. All external references must be re- 
solved by means of this directory; if they cannot 
be resolved, an appropriate error message is gen- 
erated. 

The directory is a user-constructed object 
which is, in general, built to control the transla- 
tion of a specific set of related modules. The ac- 
tual description units are stored in a multilevel, 
tree structured file system similar to the MULTICS 
file system, 9 and the references to description 
units in a directory are actually references into 
this file system. The primitives for constructing 
directories and for manipulating the file system are 
independent of the language, forming the "file sys- 
tem cluster" and the "directory cluster." 

Type Checkin~ 

The language described in this paper is based 
on the idea of strong type checking, and the lan- 
guage translator is supposed to enforce strong type 
checking even across the interface between two sep- 
arately compiled procedures. In this section we 
discuss some of the problems arising from strong 
type checking. 

Strong type checking means that whenever an 
object is passed from a calling function to a called 

function, its type must be compatible with the type 
declared in the called function. If the called 
function is a procedure, the types must match iden- 
tically. If the called function is an operation, 
then the types must match identically unless the ob- 
ject is of the abstract type defined by the cluster 
to which the operation belongs. In this case, the 
type of the object is changed to the type rep for 
that cluster. Thus, the type checking mechanism 
controls whether the representation of an object is 
visable to a given operation. If a type error were 
undetected in this case, information supposed to have 
been inaccessible outside of the cluster, will be- 
come accessible, and program modularity will be de- 
stroyed. 

Type checking in this language is more complex 
than in most conventional languages. This is because 
user-defined abstractions, both data types and pro- 
cedures, may have types as parameters. Consider the 
data type stack defined above. We have noted the 
similarity between stacks and arrays: In each case, 
a type specification for the components of the 
structure must be supplied before an instance can be 
created. Constructs, such as stack and array, are 
called type generators because they define a class 
of types rather than a single type. Each individual 
type in the class is generated by supplying type 
definitions for each of the type parameters of the 
type generator. A type generator, like stack, which 
is built to serve the needs of future users, defines 
an open-ended class of types, and the members of its 
type class are no_tt known at the time the stack clus- 
ter is compiled. 

One of the effects of allowing user defined type 
generators is that some of the operations in the 
cluster for that "type" are polymorphic; that is, 
the operations may be defined over many different 
type domains, subject to the constraint that the 
types of any given set of arguments are type- 
consistent. An example of such an operation is 
push in the stack cluster. Push takes as its op- 
erands a stack and a value. The type consistency 
requirement for push is that, if the type of the 
stack is "stack of T," the value pushed must be of 
type T; thus, strong type checking for the operation 
push involves determining that its stack argument 
really is a stack, determining the type of the stack 
argument, determining the type of the value being 
pushed and determining that they satisfy the con- 
sistency requirement. 

It is desirable to do compile rtime type checking, 
since type errors are detected as early as possible. 
Because of the freedom with which types can be used 
in the language, however, it is not clear how com- 
plete the compile time type checking can be. There- 
fore, the design of the language is based on a run- 
time type checking mechanism which is augmented by 
as much compile-time checking as is possible. 

It is clear that given a suitable representa- 
tion of types, a run time check for identically 
matching types can be programmed. The kind of type 
checking which results in the representation of an 
object being exposed to an operation can be handled 
at run-time by a technique described by Morris I0 
which is an outgrowth of the work on protection in 
operating systems. (There is a strong correlation 
between clusters and protected subsystems; clusters 
provide a natural m~chanism for encapsulating pri- 
vate information.) Iz 
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In the future we may be able to dispense with 
the run time mechanism, since recent work by John 
Reynolds 12 indicates that complete compile-time type 
checking may be possible. We look forward to the 
completion of Reynolds' work, and intend to design 
a version of the language based on compile-time 
type checking in the near future. 

Retention 

The language has been designed to permit acti- 
vations of clusters, procedure and operation to be 
implemented using a stack discipline. Clusters, 
procedures and operations have no free variables at 
execution time, and all variables defined therein 
are purely local. All information that is to be re- 
tained or shared must be stored in the rep of an ob- 
ject. The objects are allocated in a heap where the 
retention strategy is used. In practice, there are 
a number of easily identified cases where objects 
need not be placed in the heap but can instead be 
allocated on the stack, either because the object is 
not shared or because once it has been allocated its 
content never changes. These cases may be opti- 
mized by the language translator. 

Efficiency 

We believe it is helpful to associate two struc- 
tures with a program: its lo~ical structure and its 
physical structure. The primary business of a pro- 
grammer is to build a program with a good logical 
structure -- one which is understandable and leads 
to ease in modification and maintenance. 13 However, 
a good logical structure does not necessarily imply 
a good physical structure -- one which is efficient 
to execute. In fact, the techniques employed to 
achieve good logical structure (hierarchy, access 
to data only through functions, etc.) in many cases 
seem to imply bad physical structure. 

We believe it is the business of the compiler 
to map good logical structure into good physical 
structure. The fact that the two structures may 
diverge is acceptable provided that the compiler is 
verified, and that all programming tools (for ex- 
ample, the debugging aids) are defined to hide the 
divergence. 

The language is intended to be compiled by an 
optimizing compiler which achieves a good physical 
structure in the output code. An important ef- 
ficiency can be obtained from the fact that the lan- 
guage is flexible with respect to the meaning of an 
operation call. Each operation call may be replaced 
either by an actual call upon the corresponding op- 
eration or by inline code for the operation. Two 
aspects of the language design make this flexibility 
possible: 

I. Because the syntax for an operation call is 
identical in both cases, it is possible to 
change the compiling technique that is 
used without rewriting the procedure in 
which the operator is used. 

2. The invariant portion of the cluster -- the 
code for the operations -- has been care- 
fully separated from the rep, which holds 
the object dependent information; thus, 
inline insertion of the code is possible. 

Inline insertion of the code for an operation 

allows that code to be subject to the optimization 
transformations available in the compiler. Opti- 
mizing transformations, such as compile-time evalua- 
tion and common subexpression elimination, remove 
redundant computations, thereby decreasing the time 
needed to execute the operation. For example, all 
error checks in the stack cluster operations could 
be eliminated if those operations were inserted in- 
llne in Polish__gen. These standard optimization 
techniques should be extremely effective because the 
compiler is dealing with a structured program; the 
lack of free variables, and of goto's and other con- 
fusing control structures implies that a thorough 
data and control flow analysis can be performed. 
In other words, the compiler can benefit from the 
good logical structure of the program to obtain a 
thorough understanding of it, just as a person can. 

The price paid to obtain this execution time op- 
timization is an increase in the cost of redefining 
or modifying a module. Each such modification may 
require the recompilation of the modules which use 
the modified functions inline. Since the decision 
to use inline code can be delayed until performance 
measurements indicate which sections of a system are 
critical, one need relinquish the flexibility of 
easy program modification only where a positive per- 
formance benefit would result from inline code. Note 
that the list of the uses of the module, kept in 
the description-unit, can be used to cause automatic 
recompilation when changes are made. 

Conclusions 

This paper described a new kind of abstrac- 
tion, the abstract data type, which augments our 
ability to make use of abstraction in building pro- 
grams. The approach was discussed both as a concept 
and as a part of a programming language. Several 
examples of its use were given. An abstract data 
type was defined to be a class of objects which is 
completely characterized by the operations which may 
be performed on those objects. A new linguistic 
construct, the operation cluster, was introduced to 
provide programming language support for abstract 
data types. 

The rationale behind undertaking to develop the 
language was to make the practice of structured pro- 
gramming more understandable by providing a langauge 
in which the abstractions uncovered in the course of 
program design could be expressed. We believe that 
the concept of abstract data type provides data ab- 
straction in a form most useful to the programmer: 
he need only be aware of the behavior of an abstract 
object, which is precisely the information he needs 
to write his program, and irrelevant details about 
how the object is represented in storage and how the 
operations are implemented, are hidden from him. In 
fact, he is unable to make use of implementation de- 
tails, leading to an improvement in program quality: 
programs will be more modular, and easier to under- 
stand, modify, maintain, and prove correct. 

Of course, program quality is most dependent 
on good program design. Although a language can 
never teach a programmer what constitutes a well- 
designed program, it can guide him into thinking 
about the right things. W~3believe that abstraction 
is the key to good design, and we have discovered 
in our experiments in using the language that it 
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encourages the programmer to consciously search for 
abstractionsj especially data abstractions~ and to 
think very hard about their use and definition. 

We believe that the approach to abstraction 
discussed in the paper can be usefully incorporated 
in many different kinds of languages. It is unlikely 
that any language, no matter how high-level, con- 
tains all the abstractions which any person working 
in it would require. Therefore, the abstraction- 
building-mechanism described in this paper would be 
a useful feature of a very-high-level language. 
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