
PROGRAMMING WITH ABSTRACT DATA TYPES

Barbara Liskov
Massachusetts Institute of Technology

Project MAC
Cambridge, Massachusetts

Stephen Zilles
Cambridge Systems Group

IBM Systems Development Division
Cambridge, Massachusetts

Abstract

The motivation behind the work in very-high-level languages is to ease the programming task by pro-
viding the programmer with a language containing primitives or abstractions suitable to his problem area.
The programmer is then able to spend his effort in the right place; he concentrates on solving his problem,
and the resulting program will be more reliable as a result. Clearly, this is a worthwhile goal.

Unfortunately, it is very difficult for a designer to select in advance all the abstractions which the
users of his language might need. If a language is to be used at all, it is likely to be used to solve
problems which its designer did not envision, and for which the abstractions embedded in the language are
not sufficient.

This paper presents an approach which allows the set of built-in abstractions to be augmented when the
need for a new data abstraction is discovered. This approach to the handling of abstraction is an outgrowth
of work on designing a language for structured programming. Relevant aspects of this language are described,
and examples of the use and definitions of abstractions are given.

Introduction

This paper describes an approach to computer
representation of abstraction. The approach, de-
veloped while designing a language to support struc-
tured programming, is also relevant to work in very-
high-level languages. We begin by explaining its
relevance and by comparing work in structured pro-
gramming and very-high-level languages.

The purpose of structured programming is to
enhance the reliability and understandability of
programs. Very-high-level languages, while pri-
marily intended to increase prograrmner productivity
by easing the programmer's task, can also be ex-
pected to enhance the reliability and understand-
ability of code. Thus, similar benefits can be ex-
pected from work in the two areas.

Work in the two areas, however, proceeds along
different lines. A very-high-level language at-
tempts to present the user with the abstractions
(operations, data structures, and control struc-
tures) useful to his application area. The user
can use these abstractions without being concerned
with how they are implemented -- he is only con-

Work reported herein was supported in part by the
National Science Foundation under research grant
GJ-34671.

cerned with what they do. He is thus able to ig-
nore details not relevant to his application area,
and to concentrate on solving his problem.

Structured programming attempts to impose a
discipline on the programming task so that the re-
suiting programs are '~ell-structured." In this
discipline, a problem is solved by means of a pro-
cess of successive decomposition. The first step
is to write a program which solves the problem but
which runs on an abstract machine, one which pro-
vides just those data objects and operations which
are ideally suited to solving the problem. Some or
all of those data objects and operations are truly
abstract, i.e., not present as primitives in the
programming language being used. We will, for the
present, group them loosely together under the term
"abstraction."

The programmer is initially concerned with
satisfying himself (or proving) that his program
correctly solves the problem. In this analysis he
is concerned with the way his program makes use of
the abstractions, but not with any details of how
those abstractions may be realized. When he is
satisfied with the correctness of his program, he
turns his attention to the abstractions it uses.
Each abstraction represents a new problem, requiring
additional programs for its solution. The new pro-
gram may also be written to run on an abstract

50

machine, introducing further abstractions. The
original problem is completely solved when all ab-
stractions generated in the course of constructing
the progrm~ have been realized by further programs.

It is clear now that the approaches of very-
high-level languages and structured programming are
related to one another: each is based on the idea
of making use of those abstractions which are cor-
rect for the problem being solved. Furthermore, the
rationale for using the abstractions is the same in
both approaches: to free the programmer from con-
cern with details not relevant to the problem he is
solving.

In very-high-level languages, the designers
attempt to identify the set of useful abstractions
in advance. A structured programming language, on
the other hand, contains no preconceived notions
about the particular set of useful abstractions,
but, instead, must provide a mechanism whereby the
language can be extended to contain the abstractions
which the user requires. A language containing such
a mechanism can be viewed as a general-purpose, in-
definitely-high-level language.

In this paper we describe an approach to ab-
straction which permits the set of built-in ab-
stractions to be augmented when the need for new
abstractions is discovered. We begin by analyzing
the abstractions used in writing programs, and iden-
tify the need for data abstractions. A language
supporting the use and definition of data abstrac-
tions is informally described, and some example pro-
grams are given. Remaining sections of the paper
discuss the relationship of the approach to previous
work, and some aspects of the implementation of the
language.

Th___~eMeanin~ of Abstraction

The description of structured programming given
in the preceding section is vague because it is
couched in such undefined terms as "abstraction" and
"abstract machine." In this section we analyze the
meaning of "abstraction" to determine what kinds of
abstraction a prog~armner requires, and how a struc-
tured programming language can support these re-
quirements.

What we desire from an abstraction is a mech-
anism which permits the expression of relevant de-
tails and the suppression of irrelevant details. In
the case of programming, the use which my be made
of an abstraction is relevant; the way in which the
abstraction is implemented is irrelevant. If we
consider conventional programming languages, we dis-
cover that they offer a powerful aid to abstraction:
the function or procedure. When a programmer makes
use of a procedure, he is (or should be) concerned
only with what it does -- what function it provides
for him. He is not concerned with the algorithm
executed by the procedure. In addition, procedures
provide a means of decomposing a problem -- per-
forming part of the progran~nlng task inside a pro-
cedure, and another part in the program which calls
the procedure. Thus, the existence of procedures
goes quite far toward capturing the meaning of ab-
straction.

Unfortunately, procedures alone do not provide

a sufficiently rich vocabulary of abstractions. The
abstract data objects and control structures of the
abstract machine mentioned above are not accurately
represented by independent procedures. Because we
are considering abstraction in the context of struc-
tured prograrmning, we will omit discussion of con-
trol abstractions.

This leads us to the concept of abstract data
type which is central to the design of the lan-
guage. An abstract data type defines a class of
abstract objects which is completely characterized
by the operations available on those objects. This
means that an abstract data type can be defined by
defining the characterizing operations for that
type.

We believe that the above concept captures the
fundamental properties of abstract objects. When a
programmer makes use of an abstract data object, he
is concerned only with the behavior which that ob-
ject exhibits but not with any details of how that
behavior is achieved by means of an implementation.
The behavior of an object is captured by the set of
characterizing operations. Implementation informa-
tion, such as how the object is represented in stor-
age, is only needed when defining how the character-
izing operations are to be implemented. The user of
the object is not required to know or supply this
information.

Abstract types are intended to be very much
like the built-ln types provided by a progran~ning
language. The user of a built-in type, such as
integer or integer array, is only concerned with
creating objects of that type and then performing
operations on them. He is not (usually) concerned
with how the data objects are represented, and he
views the operations on the objects as indivisible
and atomic when in fact several machine instructions
may be required to perform them. In addition~ he is
not (in general) permitted to decompose the objects.
Consider, for example, the built-in type integer.
A programmer wants to declare objects of type
integer and to perform the usual arithmetic opera-
tions on them. He is usually not interested in an
integer object as a bit string, and cannot make use
of the format of the bits within a computer word.
Also, he would like the language to protect him
from foolish misuses of types (e.g., adding an in-
teger to a character) either by treating such a
thing as an error (strong typing), or by some sort
of automatic type conversion.

In the case of a built-in data type, the pro-
gran~ner is making use of a concept or abstraction
which is realized at a lower level of detail -- the
prograrmning language itself and its compiler. Sim-
ilarly, an abstract data type is used at one level
and realized at a lower level, but the lower level
does not come into existence automatically by being
part of the language, instead, an abstract data
type is realized by writing a special kind of pro-
gram, called an operation cluster, or cluster for
short, which defines the type in terms of the opera-
tions which can be performed on it. The language
facilitates this activity by allowing the use of an
abstract data type without requiring its on-the-spot
definition. The language processor supports ab-
stract data types by building links between the use
of a type and its definition (which may be provided
either earlier or later),and by enforcing the view

5]

of a data type as equivalent to a set of operations
by a very strong form of data typing.

We observe that a consequence of the concept of
abstract data types is that most of the abstract op-
erations in a program will belong to the sets of op-
erations characterizing abstract types. We will use
the term functional abstraction to denote those ab-
stract operations which do not belong to any char-
acterizing set. A functional abstraction will be
implemented as a composition of the characterizing
operations of one or more data types, and will be
supported in the usual way by a procedure. A sine
routine might be an example of such a functional ab-
straction. The implementation of the sine routine
could be a Taylor series expansion expressed in
terms of characterizing operations of the type real.

The Prograrmnin~ LanguaEe

We now give an informal description of a pro-
gramming language which permits the use and defini-
tion of abstract data types. This language is a
simplified version of a structured prograrmning lan-
guage that is under development at M.I.T. It is
derived primarily from PASCAL I and is conventional
in many respects, but it differs from conventional
languages in several important ways.

The language provides tw____oo forms of modules cor-
responding to the two forms of abstraction: pro-
cedures, which support functional abstractions, and
operation clusters, which support abstract data
types. Each module is translated (compiled) by it-
self.

The language has no free variables in the con-
ventional sense. Within a module, the only names
that are free, and therefore are defined externally,
are the names of other modules; that is, cluster
names and procedure names. These names are bound at
translation time by means of a directory of module
names created by the programmer expressly for this
purpose. No names remain to be bound in the trans-
lated module.

The language has only structured control.
There are no ~oto's or labels, but merely variants
of concatenation, selection (if, case) and iteration
(while) constructions. A structured error-handling
mechanism is under development. In this paper, it
is represented only by the presence of the reserved
word error.

The way in which the language permits the use
and definition of abstract data types can best be
illustrated by an example. We have chosen the fol-
lowing problem: Write a program, Polish_gen, which
will translate from an infix language to a Polish
post-fix language. Polish_gen is to be a general-
purpose program which makes no assumptions about
input or output devices (or files). It makes only
the following assumptions about the input language:

i. The input language has an operator prece-
dence grammar.

2. A symbol of the input language is either an
arbitrary string of letters and ntunhers, or
a single, non-alphanumeric character;blanks
terminate symbols but are otherwise ignored.

For example, if Polish_gen received the string

a+b* (c+d)

as input, it would produce the string

abc d+*+

as output. We have chosen this problem as our ex-
ample because the problem and its solution are
familiar to people interested in programming lan-
guages, and the problem is sufficiently complex to
illustrate the use of many abstractions.

Usin~ Abstract Data Types

The procedure Polish_gen, shown in Figure i,
performs the translation described above. It takes
three arguments: input, an object of abstract type
infile which holds the sentence of the input lan-
guage; output, an object of abstract type outfile
which will accept a sentence of the output language;
and g, an object of abstract type grammar which can
be used to recognize symbols of the input language
and determine their precedence relations. In addi-
tion, Polish_gen makes use of local variables of ab-
stract types stack and token. Note that all the
data-type-names appear free in Polish_gen, as does
"scan," which names the single functional abstrac-
tion used by Polish_gen.

The language uses the same syntax to declare
variables of abstract data type as to declare vari-
ables of primitive type. The syntax distinguishes
between declarations which involve the creation of
an object and those which do not. For example,

t : token

states that t is the name of a variable which holds
an object of abstract type token, but that no token
object is to be 6reated, so that the value of t is
initially undefined. Thus the variable t is being

Polish_Een: procedure(input: infile,
output: outfile, g: grammar);

t : token;
mustscan: boolean;
s : stack(token) ;

mustscan := true;
stack$push (s, token (g, granmmr$eof (g))) ;
while-~stack$empty (s) d__oo

if mustscan
then t := scan(input, g)
else mustscan := true;

if token$is__op(t)
then

case tokenSprec_rel(staekStop(s), t) of
'~":: stackSpush(s, t);
"-"'- .." stackSerasetop(s);
'~":: begin

outfile$out_str(output,
tokenSsymbol(stackSpop(s)~;

mustscan := false;
end

otherwise error;
else outfile$out_str(output, tokenSsymbol(t));

end
outfile$close(output);
return;

end Polish_gen

Figure i

52

declared in the same way as mustsean in

mustscan: boolean

The presence of parentheses following the type
name signals creation of an object. For example,

s: stack(token)

states that s is the name of a variable which holds
an object of abstract type stack, and a stack ob-
ject is to be created and stored in s. Information
required for creating the object is passed in a pa-
rameter list; in the example, the only parameter, to-
ken, defines the type of element which may be placed
on the stack s. The declaration of a stack is sim-
ilar to an array declaration, such as "array[l..10]
of characters," in that they both require the type
of elements to be specified.

The language is strongly typed; thus there are
only three ways in which an abstract object can be
used:

i. An abstract object may be operated upon by
the operations which define its abstract
type.

2. An abstract object may be passed as a pa-
rameter to a procedure. In this case, the
type of the actual argument passed by the
calling procedure must be identical to the
type of the corresponding formal parameter
in the called procedure.

3. An abstract object may be assigned to a
variable, but only if the variable is de-
clared to hold objects of that type.

Application of a defining operation to an ab-
stract object is indicated by an operation call in
which a compound name is used: for example,

granmmr$eof(g)
stack$push(s, t)
token$is op(t)

The first part of the compound name identifies the
abstract type to which the operation belongs while
the second component identifies the operation. An
operation call will always have at least one
parameter -- an object of the abstract type to
which the operation belongs.

There are several reasons why the type-name is
included in the operation call. First, since an op-
eration call may have several parameters of differ-
ent abstract types, the absence of the type-name
may lead to an ambiguity as to which object is ac-
tually being operated on. Second, use of the com-
pound name permits different data types to use the
same names for operations without any clash of
identifiers arising. Third, we believe that the
type-name prefix will enhance the understandability
of programs, once the reader is used to the nota-
tion. Not only is the type of the operation im-
mediately apparent, but operation calls are clearly
distinguished from procedure calls.

The statement

t := scan(input, g)

illustrates both passing abstract objects as param-
eters, and assigning an abstract object to a vari-
able. The procedure scan, shown in Figure 2, ex-
pects objects of type infile and grammar as its
arguments, and returns an object of type token,

scan: procedure(input: infile, g: granmmr)
returns token;

newsymb: 9trine;
ch: char;

ch := infile$get(input)
while ch=" " d__oo ch := infile$get(input); end
if infileSeof(input)

then return token(g, granmmrSeof(g));
newsymb :=unit string(ch);
i falphanumeric(ch) then

while alphanumeri¢(infile$peek(input)) d__oo
newsymb := newsymb concat infile$get(input);

en__~d
return token(g, newsymb);

end scan
Figure 2

which is then stored in the token variable t.

We have explained that objects can be created
in conjunction with variable declaration. It is
also possible for objects to be created independent-
ly of variable declaration. Object creation is
specified (whether inside a declaration or not) by
the appearance of the type-name followed by paren-
theses. For example, in the last line of scan

token(g, newsymb)

states that a token object, representing the symbol
just scanned, is to be created; the information re-
quired to create the object (the grammar and the
symbol just scanned) is passed in a parameter list.

A brief description of the logic of Polish_gen
can now be given. Pollsh__gen uses the functional
abstraction scan to obtain a symbol of the grarmnar
from the input string. Scan returns the symbol in
the form of a token -- a type introduced to provide
efficient execution without revealing information
about how the grammar represents symbols.
Polish_.gen stores the token containing the newly
scanned symbol in variable t. If t holds a token
representing an identifier (like "a") rather than
an operator (like "+"), that identifier is put in
the output file immediately. Otherwise, the token
on top of the stack is compared with t to determine
the precedence relation between them. If the rela-
tion is '~", t is pushed on the stack (e.g.,
"+" < "*"). If the relation is "=", both t and the
top-of-stack token are discarded (e.g., "("=")"),
If the relation is '~", the operator held in the
top-of-stack token is appended to the output file,
exposing a new top-of-stack token. Since that op-
erator token may have a higher precedence than t,
the boolean variable mustscan is used to prevent a
new symbol from being scanned and to insure the next
comparison is with the current value of t. Because
a grammar-dependent representation of the end of
file symbol (grammar$eof(g)) is initially pushed
onto the stack, the stack will become empty causing
Polish__gen to complete only when a matching eof
token is generated by exhausting the input. (We
have made the simplifying assumption that the input
is a legitimate sentence of the infix language.)

The scan procedure obtains characters from the
input file via the operations defining the abstract
type infile. It makes use of the data types char
and string, and operations on objects of these types.
Although these types are shown as built-in, they

53

could easily have been abstract types instead. In
that case, the built-in predicate alphanumeric~ for
example, would have been expressed as
char$alphanumeric. Only the syntax would change;
the meaning and use of the types would be the same
in either case.

To sum up, Polish_gen makes use of five data
abstractions, infile, outfile, granmmr, token and
stack, plus one functional abstraction, scan. The
power of the data abstractions is illustrated by
the types infile and outfile, which are used to
shield Polish__gen from any physical facts concerning
its input and output, respectively. Polish gen does
not know what input and output devices are being
used, when the I/0 actually takes place, nor does it
know how characters are represented on the devices.
What it does know is just enough for its needs: For
parameter output it knows how to add a string of
characters (outfile$out_str) and how to signify that
the output is complete (outfile$close). For param-
eter input, it knows how to obtain the next char-
acter (infileSget), how to look at the next char-
acter without removing it from input (infileSpeek),
and how to recognize the end of input (infileSeof).
(Note that for scan to operate correctly, infile
must provide a non-blank, non-alphanumeric character
on any call on infileSget or infileSpeek after the
end of file has been reached.) In every case its
knowledge consists of the names of the operations
which provide these services.

Definin~ Abstract Data Types

In this section, we describe the progran~ning
object -- the operation cluster -- whose translation
provides an implementation of a type. The cluster
contains code implementing each of the character-
izing operations and thereby embodies the idea that
a data type is defined by a set of operations.

As an example, consider the abstract data type
stack used by Polish_gen. A cluster supporting
stacks is shown in Figure 3. This cluster imple-
ments a very general kind of stack object in which
the type of the stack elements is not known in ad-
vance. The cluster parameter element_type indicates
the type of element a particular stack object is to
contain.

The first part of a cluster definition provides
a very brief description of the interface which the
cluster presents to its users. The cluster inter-
face defines the name of the cluster, the parameters
required to create an instance of the cluster (an
object of the abstract type which the cluster imple-
ments), and a list of the operations defining the
type which the cluster implements, e.g.,

stack: cluster(element-type: type)
i~s push, pop, top, erasetop, empty

The use of the reserved word i~s underllnes the idea
of a data type being characterized by a group of
operations.

The remainder of the cluster definition, de-
scribing how the abstract type is actually supported,
contains three parts: the object representation,
the code to create objects and the operation defini-
tions.

stack: cluster(element_type: type)
i__ss push, pop, top, erasetop, empty ;

rep(type_param: type) = (tp: integer;
e type: type;
stk: array[l..]

o_ff type_param;

c r e a t e

s: rep(element_type);

s.tp := O;
s.e_type := element_type;
return s;
en___dd

push: operation(s: rep, v: s.e_type);

s.tp := s.tp+l;
s.stk[s.tp] := v;
r e tur n;
end

pop: operation(s: rep) returns s.e type;

i_~f s.tp=0 then error;
s.tp := s.tp-l;
return s.stk[s.tp+l];
en_~d

top: operation(s: rep) returns s.e_type;

i__ff s.tp = 0 then error;
return s.stk[s.tp];
end

erasetop: operation(s: rep);

i_~f s.tp = 0 then error;
s.tp := s.tp-l;
return;
end

empty: operatlon(s: rep) returns boolean;

return s.tp = O;
en__d

en_~d stack

Figure 3

Ob~ec t Representation. Users of the abstract
data type view objects of that type as indivisible
entities. Inside the cluster, however, objects are
viewed as decomposable into elements of more primi-
tive type. The rep description

rep{((rep-parameters>)} = (type-definition)

defines a new type, denoted by the reserved word
rep, which is accessible only within the cluster and
describes how objects are viewed there. The
(type-definition) defines a template which permits
objects of that type to be built and decomposed. In
general, it will make use of the data structuring
methods provided by the language: arrays (possibly
unbounded) or PASCAL records. The optional ("[}")
(rep-parameters) make it possible to delay speci-
fying some aspects of the <type definition> until an
instance of the rep is created. Consider the rep

54

description of the stack cluster:

rep(type__param: type) = (tp: integer; e_type: type;
stk: array[l..] of type_param)

The <type-definition> specifies that a stack object
is represented by a record containing three compo-
nents named tp, stk, and e type. The parameter,
type_param, specifies the type of element which may
be stored in the unbounded array named stk which
will hold the elements pushed onto a stack object.
This same type will also be stored in the e_type
component, and is used for type checking as will be
described below. The tp component holds the index
of the topmost element of the stack.

Object Creation. The reserved word create
marks the create__code~ the code to be executed when
an object of the abstract type is created. The
cluster may be viewed as a procedure whose procedure
body is the create-code. When a user indicates that
an object of abstract type is to be created, for ex-
ample,

s: stack(token)

one thing that happens (at execution time) is a call
on the create-code, causing that procedure body to
be executed. The parameters of the cluster are ac-
tually parameters of the create-code. Since free
variables, other than references to externally de-
fined modules~ are not provided, these parameters
are not accessible either to the operations or to
the <type definition> in the rep. Therefore, any
information about the parameters that is to be saved
must be explicitly inserted into each instance of
the rep.

The code shown in the stack cluster is typical
of create-code. First, an object of type rep is
created; that is, space is allocated to hold the ob-
ject as defined by the rep. Then, some initial val-
ues are stored in the object. Finally, the object
is returned to the caller. When the object is re-
turned, its type is changed from type rep to the ab-
stract type defined by the cluster.

Operations. The remainder of the cluster con-
sists of a group of operation definitions, which
provide implementations of the permissible operations
on the data type. Operation definitions are like or-
dinary procedure definitions except that they have ac-
cess to the rep of the cluster, which permits them
to decompose objects of the cluster type. Operations
are not themselves modules; they will be accepted by
the translator only as part of a cluster.

Operations always have at least one parameter --
of type rep. Because the cluster may simultaneously
support many objects of its defined type, this pa-
rameter tells the operation the particular object on
which to operate. Note that the type of this pa-
rameter will change from the abstract type to type
rep as it is passed between the caller and the op-
eration.

Because the language is strongly typed, the
type of objects pushed on a given stack must be
checked for consistency with the type of elements
the stack can hold. This consistency requirement is
specified syntactically by declaring that the type
of the second argument of push is to be the same as
the e_type component of the re_9_E of the stack object
which is the first argument of push. The translator

can generate code to verify that the types match at
run time and to raise an error if they don't.

Controllin~ the Use of Information

Abstract data types were introduced as a way of
freeing a progran~ner from concern about irrelevant
details in his use of data abstractions. But in
fact we have gone further than that. Because the
language is strongly typed, the user is unable to
make use of any implementation details. In this
section we discuss the benefits that accrue from
this limitation: the programs which result are more
modular, and easier to understand, modify~ maintain
and prove correct.

Token is a good example of a type created to
control access to implementation details. Instead
of introducing a new type, Polish__gen could have
been written to accept strings from scan, to store
strings on the stack, and to compare strings to de-
termine the precedence relation (via an appropriate
operation granmmrSprec_rel). Such a solution would
be inefficient. Since the precedence matrix can be
indexed by the positions of the operators in the re-
served word table of the gra~mmr, an efficient im-
plementation would look up the character string only
once to find out if it is an operator symbol and, if
so, use the index of the operator in Polish_gen.

This, however, exposes information about the
representation of the grarm~ar. If Polish__gen or
some other module which uses the grammar makes use
of this information, normal maintenance and modifi-
cation of the grammar cluster can introduce errors
which are difficult to track down. 2 Therefore, the
new type, token~ is introduced to limit the distri-
bution of information about how the grammar is rep-
resented. Now a redefinition of the grammar cluster
can affect only the token cluster -- which makes no
assumptions about the index it receives from gram-
mar. If an error occurs while looking up a prece-
dence relation (like an index out of bounds), the
error can only have been caused by something in the
token or grammar cluster.

Actually, the selection of an implementation of
tokens -- for example, whether a token is represented
by an integer or a character string -- involves a de-
sign decision. This decision can be delayed until
the cluster for tokens is defined and need not be
made during the coding of Polish_gen. Therefore,
the programming of Polish_gen can be done according
to one of Dijkstra's programming principles: build
the program one decision at a time. 3 Following this
principle leads to a simplified logic for Polish_gen,
making it easier to understand and maintain.

Making the representation inaccessible also re-
suits in a program which is easier to prove correct.
The proof of a program is divided into two parts:
a proof that the cluster correctly implements the
type, and a proof that the program using the type is
correct. Only in the former proof need details of
the implementation of type objects be considered; the
latter proof is based only on the abstract properties
of the types, which may be expressed in terms of re-
lations among the characterizing operations for each
type.

55

Relationship to Previous Work

Much work has been done in the area of creating
suitable mechanisms for defining data types. There
is no hope of surveying all that work here, nor is
it all relevant to this paper. In this section we
outline the areas of work that are most closely re-
lated to clusters in that they provide some tools
for defining abstract data types, and we discuss
how the cluster approach differs from that work.
The related work can be roughly divided into three
categories: extensible languages, implementation
specifications for a set of standard abstract op-
erators, and S~67class definitions.

Extensible Languages

Much of the work and much of the success with
extensible languages 4 has been in the area of data
type definition. This work, however, has been pri-
marily oriented toward defining representations
rather than abstract types. New data representa-
tions, or modes as they are frequently called, are
created by constructing the representation in terms
of existing modes using the primitive mode construc-
tion facilities of the language. Mode construction
facilities provided by an extensible language typi-
cally include mechanisms for defining pointers to
objects, for defining unions of distinct mode clas-
ses, and for constructing aggregates (arrays and
records) of objects. These correspond closely to
the facilities used in this paper to define reps.
The use of these mode definition mechanisms implies
the definition of a set of constructors, selectors
and predicates which may be applied to objects of
the mode being defined. In some languages, the mode
definitions may allow this set of operations to be
augmented by certain operations, such as assignment,
which are expressly provided for in the language.

The main problem with extensible languages is
that they do not encourage the use of data abstrac-
tions. It is, in general, impossible to define all
the operations characterizing an abstract data type
within the mode definition. As we noted, only the
representation of a data type is defined using the
mode extension mechanism. Any abstract operation
which is not equivalent to a constructor, selector
or predicate for the representation must be defined
outside the mode definition by a procedure or macro
which can be made to appear like an operator by
using the syntax extension facility. Therefore, a
user must learn two different mechanisms; and the
definition, instead of being collected in one place,
as it is in an operation cluster, is split into dis-
tinct parts. Furthermore, it is difficult to re-
strict access to the representation solely to the
characterizing operations of the abstract data type.

Standard Abstract Operations

The work derived from the earlier work of
Mealy 5 and Balzer 6 is much closer in spirit to the
approach taken here. Mealy establfshed the view
that a data collection is a map from a set of se-
lectors to a set of values, and that operations on
data collections are either transformations on the
map or uses of the map to access elements. This
view has led to attempts to standardize a set of ab-
stract operators for data collections. For example,
Balzer proposed a particular abstraction for such
collections which definesa set of four abstract op-
erators to create, access, modify, and destroy ab-

stract data collections. The user would define a
particular collection by specifying how each ab-
stract operation was to be implemented. This work
has been extended (e.g., Earley7), but its primary
emphasis has remained on defining a standard set of
abstract operations. More complex operations are
defined as procedures written in terms of these ab-
stract operations.

Although it is useful to distinguish some ab-
stract operations, such as "create," which have a
high probability of being applicable to every ab-
stract data type, it seems unreasonable to expect
that a predetermined set of operations will suffice
to manipulate every abstract data object. Therefore,
leaving the selection of the operations to the crea-
tor of the type, as is done with operation clusters,
provides a more closely tailored abstraction.

SIMULA Classes

The language which most closely resembles, in
form, the language presented here is SIMULA 67. 8
SlMULA class definitions have many similarities with
cluster definitions. There is, however, a very im-
portant philosophical difference in these two lan-
guages which leads to several important linguistic
differences. The classes of SlMULA were designed to
represent and provide full accessibility to data ob-
jects. Every attribute and function in a class is
accessible in the block in which the class definition
is embedded. Therefore, the actual form of the rep-
resentation is always known to the user.

In contrast to this, the rep of a cluster is
not accessible outside the cluster. Operations in
the cluster provide the only way to access the con-
tents of the rep and, even then, only a subset of
the operations defined in the cluster may be extern-
ally accessible. As a result of this philosophical
difference, the mechanisms for referencing data, the
use of non-local variable references, and the use of
blocks and block structuring are quite different in
the two languages.

Implementation Considerations

Most aspects of the implementation of clusters
will be handled in a conventional manner. There
are, however, several aspects of the implementation
which deserve special mention because they are non-
standard or have a significant impact on the prac-
ticality of using clusters to represent abstract
data.

Modules and Module-Names

The compiler accepts a module as input. A
module will usually be a cluster, but will some-
times be a procedure like Polish_gen or scan. In
the course of module translation, externally defined
module-names, used to refer to procedures and data
types, will be encountered. (Note that the refer-
ences to operations on abstract data types do not
introduce any additional external references because
they are relative to the abstract type with which
the operation name is prefixed.)

When the compiler processes a module it builds
or adds to a description-unit containing information
about the module. Information held in the
description-unit includes:

56

i. The location of the object code generated
by the compiler.

2. A description of the interface which the
module makes available to its users. In
particular, complete information about
types of all parameters and values expected
by the module is maintained. If the module
is a cluster, information will be kept for
each operation in the cluster.

3. A list of all modules which use the module.

Obviously much more information can be stored in the
description-unit: debugging information in the form
of symbol tables, etc., documentation information,
specification information in the form of predicate
calculus descriptions of input/output relationships,
and even an analysis of the rationale for the decis-
ions made in designing the module.

The description unit is the focus for all in-
formation about a module. It can be created when
the module is processed or it can be created to be
the target of references from other modules. Cre-
ating a description unit before the module it rep-
resents is processed supports top-down design and
provides a simple way to define reeursion. Since
the description unit holds a list of all uses of
the module, the consistency of the uses and the def-
inition can be checked when the module is actually
defined and appropriate error messages can be gen-
erated at that time. The actual definition can be
delayed for quite some time as the description unit
can be used to locate code to simulate the behavior
of the module for debugging purposes.

In the course of translating a module, the
translator must give a meaning to each module name
by binding it to the code of the corresponding mod-
ule. This is done via the description unit. The
translator obtains access to description units by
means of a directory, containing a set of module-
name/description unit pairs, which it receives as
an argument. All external references must be re-
solved by means of this directory; if they cannot
be resolved, an appropriate error message is gen-
erated.

The directory is a user-constructed object
which is, in general, built to control the transla-
tion of a specific set of related modules. The ac-
tual description units are stored in a multilevel,
tree structured file system similar to the MULTICS
file system, 9 and the references to description
units in a directory are actually references into
this file system. The primitives for constructing
directories and for manipulating the file system are
independent of the language, forming the "file sys-
tem cluster" and the "directory cluster."

Type Checkin~

The language described in this paper is based
on the idea of strong type checking, and the lan-
guage translator is supposed to enforce strong type
checking even across the interface between two sep-
arately compiled procedures. In this section we
discuss some of the problems arising from strong
type checking.

Strong type checking means that whenever an
object is passed from a calling function to a called

function, its type must be compatible with the type
declared in the called function. If the called
function is a procedure, the types must match iden-
tically. If the called function is an operation,
then the types must match identically unless the ob-
ject is of the abstract type defined by the cluster
to which the operation belongs. In this case, the
type of the object is changed to the type rep for
that cluster. Thus, the type checking mechanism
controls whether the representation of an object is
visable to a given operation. If a type error were
undetected in this case, information supposed to have
been inaccessible outside of the cluster, will be-
come accessible, and program modularity will be de-
stroyed.

Type checking in this language is more complex
than in most conventional languages. This is because
user-defined abstractions, both data types and pro-
cedures, may have types as parameters. Consider the
data type stack defined above. We have noted the
similarity between stacks and arrays: In each case,
a type specification for the components of the
structure must be supplied before an instance can be
created. Constructs, such as stack and array, are
called type generators because they define a class
of types rather than a single type. Each individual
type in the class is generated by supplying type
definitions for each of the type parameters of the
type generator. A type generator, like stack, which
is built to serve the needs of future users, defines
an open-ended class of types, and the members of its
type class are no_tt known at the time the stack clus-
ter is compiled.

One of the effects of allowing user defined type
generators is that some of the operations in the
cluster for that "type" are polymorphic; that is,
the operations may be defined over many different
type domains, subject to the constraint that the
types of any given set of arguments are type-
consistent. An example of such an operation is
push in the stack cluster. Push takes as its op-
erands a stack and a value. The type consistency
requirement for push is that, if the type of the
stack is "stack of T," the value pushed must be of
type T; thus, strong type checking for the operation
push involves determining that its stack argument
really is a stack, determining the type of the stack
argument, determining the type of the value being
pushed and determining that they satisfy the con-
sistency requirement.

It is desirable to do compile rtime type checking,
since type errors are detected as early as possible.
Because of the freedom with which types can be used
in the language, however, it is not clear how com-
plete the compile time type checking can be. There-
fore, the design of the language is based on a run-
time type checking mechanism which is augmented by
as much compile-time checking as is possible.

It is clear that given a suitable representa-
tion of types, a run time check for identically
matching types can be programmed. The kind of type
checking which results in the representation of an
object being exposed to an operation can be handled
at run-time by a technique described by Morris I0
which is an outgrowth of the work on protection in
operating systems. (There is a strong correlation
between clusters and protected subsystems; clusters
provide a natural m~chanism for encapsulating pri-
vate information.) Iz

57

In the future we may be able to dispense with
the run time mechanism, since recent work by John
Reynolds 12 indicates that complete compile-time type
checking may be possible. We look forward to the
completion of Reynolds' work, and intend to design
a version of the language based on compile-time
type checking in the near future.

Retention

The language has been designed to permit acti-
vations of clusters, procedure and operation to be
implemented using a stack discipline. Clusters,
procedures and operations have no free variables at
execution time, and all variables defined therein
are purely local. All information that is to be re-
tained or shared must be stored in the rep of an ob-
ject. The objects are allocated in a heap where the
retention strategy is used. In practice, there are
a number of easily identified cases where objects
need not be placed in the heap but can instead be
allocated on the stack, either because the object is
not shared or because once it has been allocated its
content never changes. These cases may be opti-
mized by the language translator.

Efficiency

We believe it is helpful to associate two struc-
tures with a program: its lo~ical structure and its
physical structure. The primary business of a pro-
grammer is to build a program with a good logical
structure -- one which is understandable and leads
to ease in modification and maintenance. 13 However,
a good logical structure does not necessarily imply
a good physical structure -- one which is efficient
to execute. In fact, the techniques employed to
achieve good logical structure (hierarchy, access
to data only through functions, etc.) in many cases
seem to imply bad physical structure.

We believe it is the business of the compiler
to map good logical structure into good physical
structure. The fact that the two structures may
diverge is acceptable provided that the compiler is
verified, and that all programming tools (for ex-
ample, the debugging aids) are defined to hide the
divergence.

The language is intended to be compiled by an
optimizing compiler which achieves a good physical
structure in the output code. An important ef-
ficiency can be obtained from the fact that the lan-
guage is flexible with respect to the meaning of an
operation call. Each operation call may be replaced
either by an actual call upon the corresponding op-
eration or by inline code for the operation. Two
aspects of the language design make this flexibility
possible:

I. Because the syntax for an operation call is
identical in both cases, it is possible to
change the compiling technique that is
used without rewriting the procedure in
which the operator is used.

2. The invariant portion of the cluster -- the
code for the operations -- has been care-
fully separated from the rep, which holds
the object dependent information; thus,
inline insertion of the code is possible.

Inline insertion of the code for an operation

allows that code to be subject to the optimization
transformations available in the compiler. Opti-
mizing transformations, such as compile-time evalua-
tion and common subexpression elimination, remove
redundant computations, thereby decreasing the time
needed to execute the operation. For example, all
error checks in the stack cluster operations could
be eliminated if those operations were inserted in-
llne in Polish__gen. These standard optimization
techniques should be extremely effective because the
compiler is dealing with a structured program; the
lack of free variables, and of goto's and other con-
fusing control structures implies that a thorough
data and control flow analysis can be performed.
In other words, the compiler can benefit from the
good logical structure of the program to obtain a
thorough understanding of it, just as a person can.

The price paid to obtain this execution time op-
timization is an increase in the cost of redefining
or modifying a module. Each such modification may
require the recompilation of the modules which use
the modified functions inline. Since the decision
to use inline code can be delayed until performance
measurements indicate which sections of a system are
critical, one need relinquish the flexibility of
easy program modification only where a positive per-
formance benefit would result from inline code. Note
that the list of the uses of the module, kept in
the description-unit, can be used to cause automatic
recompilation when changes are made.

Conclusions

This paper described a new kind of abstrac-
tion, the abstract data type, which augments our
ability to make use of abstraction in building pro-
grams. The approach was discussed both as a concept
and as a part of a programming language. Several
examples of its use were given. An abstract data
type was defined to be a class of objects which is
completely characterized by the operations which may
be performed on those objects. A new linguistic
construct, the operation cluster, was introduced to
provide programming language support for abstract
data types.

The rationale behind undertaking to develop the
language was to make the practice of structured pro-
gramming more understandable by providing a langauge
in which the abstractions uncovered in the course of
program design could be expressed. We believe that
the concept of abstract data type provides data ab-
straction in a form most useful to the programmer:
he need only be aware of the behavior of an abstract
object, which is precisely the information he needs
to write his program, and irrelevant details about
how the object is represented in storage and how the
operations are implemented, are hidden from him. In
fact, he is unable to make use of implementation de-
tails, leading to an improvement in program quality:
programs will be more modular, and easier to under-
stand, modify, maintain, and prove correct.

Of course, program quality is most dependent
on good program design. Although a language can
never teach a programmer what constitutes a well-
designed program, it can guide him into thinking
about the right things. W~3believe that abstraction
is the key to good design, and we have discovered
in our experiments in using the language that it

58

encourages the programmer to consciously search for
abstractionsj especially data abstractions~ and to
think very hard about their use and definition.

We believe that the approach to abstraction
discussed in the paper can be usefully incorporated
in many different kinds of languages. It is unlikely
that any language, no matter how high-level, con-
tains all the abstractions which any person working
in it would require. Therefore, the abstraction-
building-mechanism described in this paper would be
a useful feature of a very-high-level language.

Acknowledgements

The authors gratefully acknowledge the helpful
comments on the content and structure of the paper
made by Jack Dennis, Austin Henderson, Greg Pflster,
and the referees.

1.

2.

3.

4.

5.

6.

7.

8.

9.

i0.

ii.

12.

13.

References

Wirth, N. The progranmting language PASCAL.
Acta Informatica, Vol. I (1971), pp 35-63.

Parnas, D.L. Information distribution aspects
of design methodology, Proceedings of the IFIP
Congress, August 1971.

DiJkstra, E. W. Notes on structured programming.
Structured Pro~rammln~, A.P.I.C. Studies in Data
Processing, No. 8, Academic Press, New York,
1972, pp 1-81.

Schuman, S. A. and P. Jorrand. Definition
mechanisms in extensible programming languages.
Proceedln~s of the AFIPS, Vol. 37, 1970, pp 9-19.

Mealy, G. Another look at data. Proceedings
of the AFIPS, Vol. 31, 1967, pp 525-534.

Balzer, R. M. Dataless programming. ProceedinKs
of the AFIPS, Vol. 31, 1967, pp 557-566.

Earley, J. Toward an understanding of data struc-
tures. Comm. of the ACM, Vol. 14, No. I0
(October 1971), pp 617-627.

Dahl, O.-J., B. Myhrhaug, and K. Nygaard. Th___~e
SIMULA 67 Common Base Lan~uaRe. Norwegian Com-
puting Center, Oslo, Publication S-22, 1970.

Daley, R. C., and P. G. Neumann. A general-
purpose file system for secondary storage.
Proceedings of the AFIPS, Vol. 27, 1965~ pp
213-229.

Morris, J. H., Jr. Protection in progranmling
languages. Comm. of the ACM, Vol. 16, N__oo. i
(January 1973), pp 15-21.

Zilles, S. N. Procedural encapsulation: a
linguistic protection technique. SIGPLANNotices,
Vol. 8, N__o. 9 (September 1973), pp 140-146.

Reynolds, J. Personal communication.

Liskov, B. H. A design methodology for reliable
software systems. Proceedings of the AFIPS,
Vol. 41, 1972~ pp 191-199.

59

