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Abstract

We investigate why discretization is effective
in naive-Bayes learning. We prove a theo-
rem that identifies particular conditions un-
der which discretization will result in naive-
Bayes classifiers delivering the same probabil-
ity estimates as would be obtained if the cor-
rect probability density functions were em-
ployed. We discuss the factors that might
affect naive-Bayes classification error under
discretization. We suggest that the use of dif-
ferent discretization techniques can affect the
classification bias and variance of the gener-
ated classifiers, an effect named discretization
bias and variance. We argue that by prop-
erly managing discretization bias and vari-
ance, we can effectively reduce naive-Bayes
classification error.

1. Introduction

Naive-Bayes classifiers are simple, effective, efficient,
robust, and support incremental training. These mer-
its have seen them deployed in numerous classification
tasks. Naive-Bayes classifiers have long been a core
technique in information retrieval (Maron & Kuhns,
1960; Lewis, 1992; Lewis & Gale, 1994; Larkey &
Croft, 1996; Koller & Sahami, 1997; Mitchell, 1997;
Pazzani & Billsus, 1997; Lewis, 1998; McCallum &
Nigam, 1998; McCallum et al., 1998; Frasconi et al.,
2001). They were first introduced into machine learn-
ing as a straw man, against which new algorithms were
compared and evaluated (Cestnik et al., 1987; Clark &
Niblett, 1989; Cestnik, 1990). But it was soon realized
that their classification performance was surprisingly
good compared with other more sophisticated classifi-
cation algorithms (Kononenko, 1990; Langley et al.,
1992; Domingos & Pazzani, 1997).

Holding the attribute independence assumption, naive-
Bayes classifiers need only to estimate probabilities
about individual attributes and the class instead of
attribute combinations. An attribute can be either
qualitative or quantitative. For a qualitative attribute,
its probabilities can be estimated from corresponding

frequencies. For a quantitative attribute, either prob-
ability density estimation or discretization can be em-
ployed to estimate its probabilities. Probability den-
sity estimation requires an assumption about the form
of the probability distribution from which the quanti-
tative attribute values are drawn. Discretization cre-
ates a qualitative attribute X∗

i from a quantitative at-
tribute Xi. Each value of X∗

i corresponds to an in-
terval of values of Xi. X∗

i is used instead of Xi for
training a classifier.

With empirical evidence, Dougherty et al. (1995) sug-
gested discretization to be effective because they did
not make assumptions about the forms of quantita-
tive attributes’ probability distribution. Hsu et al.
(2000) provided an analysis based on an assumption
that each X∗

i has a Dirichlet prior. Because ‘per-
fect aggregation’ holds for Dirichlet distribution, the
probability estimation of X∗

i can be estimated inde-
pendent of the shape of the curve of Xi’s probabil-
ity density function. However, their analysis does not
explain why different discretization methods have dif-
fering degrees of effectiveness. Instead, they suggested
that ‘well-known’ discretization methods were unlikely
to degrade the naive-Bayes classification performance.
In contrast, we do not believe in this unconditional ex-
cellence. This motivates our research presented in this
paper. In particular, we prove a theorem that explains
why discretization can be effective. We argue that dis-
cretization for naive-Bayes learning should focus on
the accuracy of the probability p(C = c |X∗

i = x∗i )
as an estimate of p(C = c |Xi = xi) for each class
c. Different discretization methods can have different
accuracy of this estimation, which can affect the classi-
fication bias and variance of the generated naive-Bayes
classifiers. We name this effect discretization bias and
variance. We suggest that discretization methods that
can well manage discretization bias and variance are
of great utility.

The rest of this paper is organized as follows. Sec-
tion 2 defines naive-Bayes classifiers. Section 3 proves
a theorem that explains why discretization can be ef-
fective for naive-Bayes learning. It analyzes the fac-
tors that might affect the discretization effectiveness,
and proposes the bias-variance characteristics of dis-
cretization. It introduces two new discretization tech-



niques that aim at managing discretization bias and
variance. Section 4 discusses some related work. Sec-
tion 5 presents the conclusion.

2. Naive-Bayes classifiers

In naive-Bayes learning, each instance is described by
a vector of attribute values and its class can take any
value from some predefined set of values. A set of
instances with their classes, the training data, is pro-
vided. A test instance is presented. The learner is
asked to predict its class according to the evidence
provided by the training data. We define C as a
random variable denoting the class of an instance;
X < X1, X2, · · · , Xk > as a vector of random variables
denoting the observed attribute values (an instance);
c as a particular class label; x < x1, x2, · · · , xk > as a
particular observed attribute value vector (a particular
instance); andX = x as shorthand for X1 = x1∧X2 =
x2 ∧ · · · ∧Xk = xk.

Expected classification error under zero-one loss can
be minimized by choosing argmaxc(p(C = c |X = x))
for each x (Duda & Hart, 1973). Bayes’ theorem can
be used to calculate:

p(C = c |X = x) =
p(C = c)p(X = x |C = c)

p(X = x)
. (1)

Since the denominator in (1) is invariant across classes,
it does not affect the final choice and can be dropped:

p(C = c |X = x) ∝ p(C = c)p(X = x |C = c). (2)

The probabilities p(C = c) and p(X = x |C = c) need
to be estimated from the training data. Unfortunately,
since x is usually an unseen instance which does not
appear in the training data, it may not be possible to
directly estimate p(X = x |C = c). So a simplification
is made: if attributes X1, X2, · · · , Xk are conditionally
independent of each other given the class, then:

p(X = x |C = c) = p(∧k
i=1Xi = xi |C = c)

=

k∏

i=1

p(Xi = xi |C = c). (3)

Combining (2) and (3), one can further estimate the
most probable class by using:

p(C = c |X = x) ∝ p(C = c)

k∏

i=1

p(Xi = xi |C = c). (4)

However, (4) is applicable only when Xi is qualitative.
A qualitative attribute usually takes a small number
of values (Bluman, 1992; Samuels & Witmer, 1999).
Thus each value tends to have sufficient representative
data. The probability p(Xi = xi |C = c) can be es-
timated from the frequency of instances with C = c

and the frequency of instances with Xi = xi ∧ C = c.
This estimate is a strong consistent estimate of p(Xi =
xi |C = c) according to the strong law of large num-
bers (Casella & Berger, 1990; John & Langley, 1995).

When it is quantitative, Xi usually has a large or even
an infinite number of values (Bluman, 1992; Samuels
& Witmer, 1999). Since it denotes the probability that
Xi will take the particular value xi when the class is
c, p(Xi = xi |C = c) might be arbitrarily close to
zero. Accordingly, there usually are very few train-
ing instances for any one value. Hence it is unlikely
that reliable estimation of p(Xi = xi |C = c) can be
derived from the observed frequency. Consequently,
in contrast to qualitative attributes, each quantitative
attribute is modelled by some continuous probability
distribution over the range of its values (John & Lan-
gley, 1995). Thus p(Xi = xi |C = c) is completely
determined by a probability density function f , which
satisfies (Scheaffer & McClave, 1995): (1) f(Xi =
xi |C = c) ≥ 0,∀xi ∈ Si; (2)

∫
Si

f(Xi |C = c)dXi = 1;

(3)
∫ bi

ai
f(Xi |C = c)dXi = p(ai ≤ Xi ≤ bi |C =

c),∀[ai, bi] ∈ Si, where Si is the value space of Xi.
Naive-Bayes classifiers manipulate f(Xi = xi |C = c)
instead of p(Xi = xi |C = c). According to John and
Langley (1995), supposing Xi lying within some inter-
val [xi, xi+∆], we have p(xi ≤ Xi ≤ xi+∆ |C = c) =∫ xi+∆

xi
f(Xi |C = c)dXi. By the definition of a deriva-

tive, lim
∆→0

p(xi≤Xi≤xi+∆ |C=c)
∆ = f(Xi = xi |C = c).

Thus for very small constant ∆, p(Xi = xi |C = c) ≈
p(xi ≤ Xi ≤ xi+∆ |C = c) ≈ f(Xi = xi |C = c)×∆.
The factor ∆ then appears in the numerator of (4)
for each class. They cancel out when normalization is
performed. Thus

p(Xi = xi |C = c)∝̃f(Xi = xi |C = c). (5)

Combining (4) and (5), naive-Bayes classifiers estimate
the probability of a class c given an instance x by

p(C = c |X = x) ∝ p(C = c)

k∏

i=1

G(Xi = xi |C = c),

where G(Xi = xi |C = c)

=

{
p(Xi = xi |C = c) , ifXi is qualitative;
f(Xi = xi |C = c), ifXi is quantitative.

(6)

Classifiers using (6) are naive-Bayes classifiers. The
assumption embodied in (3) is the attribute indepen-
dence assumption. In practice, typical approaches to
estimating p(C = c) and p(Xi = xi |C = c) are the
Laplace-estimate and M-estimate respectively (Cest-
nik, 1990). Typical approaches to estimating f(Xi =
xi |C = c) are assuming f to have a Gaussian distribu-
tion (Dougherty et al., 1995; Mitchell, 1997) or kernel
density estimation (John & Langley, 1995).



3. Discretization

Discretization provides an alternative to probability
density estimation when naive-Bayes learning involves
quantitative attributes. Under probability density es-
timation, if the assumed density is not a proper esti-
mate of the true density, the naive-Bayes classification
performance tends to degrade (Dougherty et al., 1995;
John & Langley, 1995). Since the true density is usu-
ally unknown for real-world data, unsafe assumptions
unfortunately often occur. Discretization can circum-
vent this problem. Under discretization, a qualitative
attribute X∗

i is formed for Xi. Each value x∗i of X∗
i

corresponds to an interval (ai, bi] of Xi. Any original
quantitative value xi ∈ (ai, bi] is replaced by x∗i . All
relevant probabilities are estimated with respect to x∗i .
Since probabilities of X∗

i can be properly estimated
from corresponding frequencies as long as there are
enough training instances, there is no need to assume
the probability density function any more. However,
because qualitative data have a lower level of mea-
surement than quantitative data (Samuels & Witmer,
1999), discretization might suffer information loss.

3.1. Why discretization can be effective

We here prove Theorem 1 that suggests that dis-
cretization can be effective to the degree that
p(C = c |X∗ = x∗) is an accurate estimate of
p(C = c |X = x), where instance x∗ is the discretized
version of instance x.

Theorem 1 Assume the first l of k attributes
are quantitative and the remaining attributes
are qualitative1. Suppose instance X∗ = x∗ is
the discretized version of instance X = x, re-
sulting from substituting qualitative attribute X∗

i

for quantitative attribute Xi (1 ≤ i ≤ l). If
∀l

i=1(p(C = c |Xi = xi) = p(C = c |X∗
i = x∗i )), and

the naive-Bayes attribute independence assumption (3)
holds, we have p(C = c |X = x) ∝ p(C = c |X∗ = x∗).

Proof: According to Bayes theorem, we have:

p(C = c |X = x)

= p(C = c)
p(X = x |C = c)

p(X = x)
;

since the naive-Bayes attribute independence assump-
tion (3) holds, we continue:

=
p(C = c)

p(X = x)

k∏

i=1

p(Xi = xi |C = c);

1In naive-Bayes learning, the order of attributes does
not matter. We make this assumption only to simplify the
expression of our proof. This does not at all affect the
theoretical analysis.

using Bayes theorem:

=
p(C = c)

p(X = x)

k∏

i=1

p(Xi = xi)p(C = c |Xi = xi)

p(C = c)

=
p(C = c)

p(C = c)k

∏
k

i=1
p(Xi = xi)

p(X = x)

k∏

i=1

p(C = c |Xi = xi);

since the factor

∏
k

i=1
p(Xi=xi)

p(X=x)
is invariant across classes:

∝ p(C = c)
1−k

k∏

i=1

p(C = c |Xi = xi)

= p(C = c)
1−k

l∏

i=1

p(C = c |Xi = xi)

k∏

j=l+1

p(C = c |Xj = xj);

since ∀l
i=1(p(C = c |Xi = xi) = p(C = c |X∗

i = x∗i )):

= p(C = c)
1−k

l∏

i=1

p(C = c |X
∗

i = x
∗

i )

k∏

j=l+1

p(C = c |Xj = xj);

using Bayes theorem again:

= p(C = c)
1−k

l∏

i=1

p(C = c)p(X∗

i = x∗i |C = c)

p(X∗

i
= x∗

i
)

k∏

j=l+1

p(C = c)p(Xj = xj |C = c)

p(Xj = xj)

= p(C = c)

∏
l

i=1
p(X∗

i = x∗i |C = c)
∏

k

j=l+1
p(Xj = xj |C = c)

∏
l

i=1
p(X∗

i
= x∗

i
)
∏

k

j=l+1
p(Xj = xj)

;

since the denominator
∏

l

i=1
p(X∗

i = x∗i )
∏

k

j=l+1
p(Xj = xj)

is invariant across classes:

∝ p(C = c)

l∏

i=1

p(X
∗

i = x
∗

i |C = c)

k∏

j=l+1

p(Xj = xj |C = c);

since the naive-Bayes attribute independence assump-
tion (3) holds:

= p(C = c)p(X
∗

= x
∗

|C = c)

= p(C = c |X
∗

= x
∗

)p(X
∗

= x
∗

);

since p(X∗ = x
∗) is invariant across classes:

∝ p(C = c |X∗ = x
∗). 2

Theorem 1 assures us that as long as the attribute
independence assumption holds, and discretization
forms a qualitative X∗

i for each quantitative Xi such
that p(C = c |X∗

i = x∗i ) = p(C = c |Xi = xi), dis-
cretization will result in naive-Bayes classifiers deliv-
ering the same probability estimates as would be ob-
tained if the correct probability density function were
employed. Since X∗

i is qualitative, naive-Bayes classi-
fiers can estimate p(C = c |X = x) without assuming
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Figure 1. Probability distribution in one-attribute problem

any form of the probability density.

3.2. What can affect discretization
effectiveness

When we talk about the effectiveness of a discretiza-
tion method, we mean the classification performance
of naive-Bayes classifiers that are trained on data pre-
processed by this discretization method. According to
Theorem 1, we believe that the accuracy of estimating
p(C = c |Xi = xi) by p(C = c |X∗

i = x∗i ) takes a key
role in this issue. Two influential factors are decision
boundaries and the error tolerance of probability es-
timation. How discretization deals with these factors
can affect the classification bias and variance of the
generated classifiers, an effect we name discretization
bias and variance. According to (6), the prior proba-
bility of each class p(C = c) also affects the final choice
of the class. To simplify our analysis, we here assume
that each class has the same prior probability. That
is, p(C = c) is identical for each c. Thus we can cancel
the effect of p(C = c). However, our analysis extends
straightforwardly to non-uniform cases.

3.2.1. Classification bias and variance

The performance of naive-Bayes classifiers discussed
in our study is measured by their classification er-
ror. The error can be partitioned into a bias term,
a variance term and an irreducible term (Kong &
Dietterich, 1995; Breiman, 1996; Kohavi & Wolpert,
1996; Friedman, 1997; Webb, 2000). Bias describes
the component of error that results from systematic
error of the learning algorithm. Variance describes
the component of error that results from random vari-
ation in the training data and from random behav-
ior in the learning algorithm, and thus measures how
sensitive an algorithm is to changes in the training
data. As the algorithm becomes more sensitive, the
variance increases. Irreducible error describes the er-
ror of an optimal algorithm (the level of noise in the
data). Consider a classification learning algorithm A
applied to a set S of training instances to produce a
classifier to classify an instance x. Suppose we could
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Figure 2. Probability distribution in two-attribute problem

draw a sequence of training sets S1, S2, ..., Sl, each
of size m, and apply A to construct classifiers. The
error of A at x can be defined as: Error(A, m,x) =
Bias(A, m,x)+V ariance(A, m,x)+Irreducible(A, m,x).
There is often a ‘bias and variance trade-off’ (Kohavi
& Wolpert, 1996). All other things being equal, as
one modifies some aspect of the learning algorithm,
it will have opposite effects on bias and variance. A
good learning scheme must have both low bias and low
variance (Moore & McCabe, 2002).

3.2.2. Decision boundary

This factor in our analysis is inspired by Hsu et al.’s
study on discretization (2000). However, Hsu et al.’s
analysis focused on the curve of f(Xi = xi |C = c). In-
stead, a decision boundary of a quantitative attribute
Xi in our analysis is the value that makes ties among
the largest probabilities of p(C |X = x) for a test in-
stance x, given the precise values of other attributes
presented in x.

Consider a simple learning task with one quantita-
tive attribute X1 and two classes c1 and c2. Suppose
X1 ∈ [0, 2], and suppose that the probability distri-
bution function for each class is p(C = c1 |X1) =
1 − (X1 − 1)

2 and p(C = c2 |X1) = (X1 − 1)
2 re-

spectively, which are plotted in Figure 1. The con-
sequent decision boundaries are labelled as DB1 and
DB2 respectively in Figure 1. The most-probable class
for an instance x =< x1 > changes each time x1’s
location crosses a decision boundary. Assume a dis-
cretization method to create intervals Ii (i = 1, · · · , 5)
as in Figure 1. I2 and I4 contain decision boundaries
while the remaining intervals do not. For any two val-
ues in I2 (or I4) but on different sides of a decision



boundary, the optimal naive-Bayes learner under zero-
one loss should select a different class for each value2.
But under discretization, all the values in the same in-
terval can not be differentiated and we will have the
same class probability estimate for all of them. Conse-
quently, naive-Bayes classifiers with discretization will
assign the same class to all of them, and thus values
at one of the two sides of the decision boundary will
be misclassified. This effect is expected to affect the
bias of the generated classifiers, and thus is named
hereafter discretization bias. The larger the interval
size (the number of training instances in the interval),
the more likely that the interval contains a decision
boundary. The larger the interval containing a deci-
sion boundary, the more instances to be misclassified,
thus the higher the discretization bias.

In one-attribute problems3, the locations of decision
boundaries of the attribute X1 depend on the dis-
tribution of p(C |X1) for each class. However, for
a multi-attribute application, the decision boundaries
of an attribute, say X1, are not only decided by the
distribution of p(C |X1), but also vary from test in-
stance to test instance depending upon the precise
values of other attributes. Consider another learning
task with two quantitative attributes X1 and X2, and
two classes c1 and c2. The probability distribution
of each class given each attribute is depicted in Fig-
ure 2, of which the probability distribution of each
class given X1 is identical with that in the above one-
attribute context. We assume that the attribute in-
dependence assumption holds. We analyze the deci-
sion boundaries of X1 for an example. If X2 does not
exist, X1 has decision boundaries as depicted in Fig-
ure 1. However, because of the existence of X2, those
might not be decision boundaries any more. Con-
sider a test instance x with X2 = 0.2. Since p(C =
c1 |X2 = 0.2) = 0.8 > p(C = c2 |X2 = 0.2) = 0.2, and

p(C = c |x) ∝
∏2

i=1 p(C = c |Xi = xi) for each class c
according to Theorem 1, p(C = c1 |x) does not equal
p(C = c2 |x) when X1 falls on any of the single at-
tribute decision boundaries as presented in Figure 1.
Instead X1’s decision boundaries change to be DB1
and DB4 as in Figure 2. Suppose another test in-
stance with X2 = 0.7. By the same reasoning X1’s
decision boundaries change to be DB2 and DB3 as in
Figure 2. When there are more than two attributes,
each combination of values of the attributes other than
X1 will result in corresponding decision boundaries of
X1. Thus in multi-attribute applications the decision

2Please note that since naive-Bayes classification is a
probabilistic problem, some instances will be misclassified
even when optimal classification is performed. An optimal
classifier is such that minimizes the naive-Bayes classifi-
cation error under zero-one loss. Hence even though it is
optimal, it still can misclassify instances on both sides of
a decision boundary.

3By default, we talk about quantitative attributes.

boundaries of one attribute can only be identified with
respect to each specific combination of values of the
other attributes. Increasing either the number of at-
tributes or the number of values of an attribute will in-
crease the number of combinations of attribute values,
and thus the number of decision boundaries. In conse-
quence, each attribute may have a very large number
of potential decision boundaries. Nevertheless, for the
same reason as we have discussed in one-attribute con-
text, intervals containing decision boundaries have the
potential negative impact on discretization bias.

Consequently, discretization bias can be reduced by
identifying the decision boundaries and setting the in-
terval boundaries close to them. However, identifying
the correct decision boundaries depends on finding the
true form of p(C |X1). Ironically, if we have already
found p(C |X1), we can resolve the classification task
directly; thus there is no need to consider discretiza-
tion at all. Without knowing p(C |X1), an extreme
solution is to set each value as an interval. Although
this most likely guarantees that no interval contains
a decision boundary, it usually results in very few in-
stances per interval. As a result, the estimation of
p(C |X1) might be so unreliable that we can not iden-
tify the truly most probable class even if there is no
decision boundary in the interval. This will affect the
classification variance of the generated classifiers. The
less training instances per interval for probability esti-
mation, the more likely that it increases the variance
of the generated classifiers since even a small change
of the training data might totally change the probabil-
ity estimation. Thus we name this effect discretization
variance. A possible solution to this problem is to re-
quire that the size of an interval should be sufficient to
ensure stability in the probability estimated therefrom.
This raises the question, how reliable must the proba-
bility be? That is, when estimating p(C = c |X1 = x1)
by p(C = c |X∗

1 = x∗1), how much error can be toler-
ated without altering the classification. This motivates
our following analysis.

3.2.3. Error tolerance of probability
estimation

To investigate this issue, we return to our example de-
picted in Figure 1. We suggest that different values
have different error tolerance of their probability esti-
mation. For example, for a test instance x < X1 =
0.1 > and thus of class c2, its true class probability
distribution is p(C = c1 |x) = p(C = c1 |X1 = 0.1) =
0.19 and p(C = c2 |x) = p(C = c2 |X1 = 0.1) = 0.81.
According to naive-Bayes learning, as long as p(C =
c2 |X1 = 0.1) > 0.50, c2 will be correctly assigned as
the class and the classification is optimal under zero-
one loss. This means, the error tolerance of estimating
p(C |X1 = 0.1) can be as big as 0.81 − 0.50 = 0.31.
However, for another test instance x < X1 = 0.3 >
and thus of class c1, its probability distribution is



p(C = c1 |x) = p(C = c1 |X1 = 0.3) = 0.51 and
p(C = c2 |x) = p(C = c2 |X1 = 0.3) = 0.49. The
error tolerance of estimating p(C |X1 = 0.3) is only
0.51 − 0.50 = 0.01. In the learning context of multi-
attribute applications, the analysis of the tolerance
of probability estimation error is even more compli-
cated. The error tolerance of a value of an attribute
affects as well as is affected by those of the values of
the other attributes since it is the multiplication of
p(C = c |Xi = xi) of each xi that decides the final
probability of each class.

The lower the error tolerance a value has, the larger
its interval size is preferred for the purpose of reliable
probability estimation. Since all the factors that affect
error tolerance vary from case to case, there can not
be a universal, or even a domain-wide constant that
represents the ideal interval size, which thus will vary
from case to case. Further, the error tolerance can
only be calculated if the true probability distribution
of the training data is known. If it is not known, then
the best we can hope for is heuristic approaches to
managing error tolerance that work well in practice.

3.3. Summary

By this line of reasoning, optimal discretization can
only be performed if the probability distribution of
p(C = c |Xi = xi) for each pair of xi and c, given each
particular test instance, is known; and thus the deci-
sion boundaries are known. If the decision boundaries
are not known, which is often the case for real-world
data, we want to have as many intervals as possible
so as to minimize the risk that an instance is classi-
fied using an interval containing a decision boundary.
By this means we expect to reduce the discretization
bias. Also, a number of previous authors have men-
tioned that the interval number (the number of inter-
vals formed) has a major effect on the naive-Bayes clas-
sification error (Pazzani, 1995; Torgo & Gama, 1997;
Gama et al., 1998; Hussain et al., 1999; Mora et al.,
2000; Hsu et al., 2000). On the other hand, however,
we want to ensure that the intervals are sufficiently
large to minimize the risk that the error of estimat-
ing p(C = c |X∗

i = x∗i ) will exceed the current error
tolerance. By this means we expect to reduce the dis-
cretization variance.

However, when the number of the training instances is
fixed, there is a trade-off between interval size and in-
terval number. That is, the larger the interval size, the
smaller the interval number, and vice versa. Because
larger interval size can result in lower discretization
variance but higher discretization bias, while larger
interval number can result in lower discretization bias
but higher discretization variance, low learning error
can be achieved by tuning interval size and interval
number to find a good trade-off between discretization
bias and variance. We argue that there is no univer-

sal solution to this problem, that the optimal trade-off
between interval size and interval number will vary
greatly from test instance to test instance.

Our analysis has been supported by the success of two
new discretization techniques that we have recently de-
veloped: proportional k-interval discretization (PKID)
and equal size discretization (ESD) (Yang & Webb,
2001; Yang & Webb, 2003). To discretize a quantita-
tive attribute, PKID equally weighs discretization bias
and variance by setting interval size and interval num-
ber equal. It uses an increase in training data to lower
both discretization bias and variance by setting them
proportional to the training data size. As the num-
ber of training instances increases, both discretization
bias and variance tend to decrease. Bias can decrease
because the interval number increases, thus the deci-
sion boundaries of the original quantitative values are
less likely to be included in intervals. Variance can
decrease because the interval size increases, thus the
naive-Bayes probability estimation is more stable and
reliable. ESD sets a safe interval size m. It discretizes
the values into intervals of size m. By introducing m,
ESD aims to ensure that the interval size is sufficient
so that there are enough training instances in each
interval to reliably estimate the naive-Bayes probabil-
ities. Thus ESD can control discretization variance by
preventing it from being very high. By not limiting
the number of intervals formed, more intervals can be
formed as the training data increases. This means that
ESD can make use of extra data to reduce discretiza-
tion bias. Our experimental results have demonstrated
that with frequency significant at the 0.05 level, PKID
and ESD each better reduce naive-Bayes classification
error than previous key discretization methods.

4. Related work

Our analysis in Theorem 1, which focuses on p(C =
c |Xi = xi) instead of f(Xi = xi |C = c), is derived
from Kononenko’s (1992). However, Kononenko’s
analysis required that the attributes be assumed un-
conditionally independent of each other, which enti-

tles
∏k

i=1 p(Xi = xi) = p(X = x). This assumption is
much stronger than the naive-Bayes attribute indepen-
dence assumption embodied in (3). Thus we suggest
that our deduction in Theorem 1 more accurately cap-
tures the mechanism by which discretization works.

Dougherty et al. (1995) conducted an empirical study
to show that naive-Bayes classifiers resulting from
discretization achieved lower classification error than
those resulting from unsafe probability density as-
sumptions. With these empirical supports, Dougherty
et al. suggested that discretization could be effective
because they did not make assumptions about the form
of the probability distribution from which the quanti-
tative attribute values were drawn.



Hsu et al. (2000) proposed an analysis of discretiza-
tion with more theoretical supports. Different from
our approach, they were interested in analyzing the
density function f . In particular, they suggested that
discretization would achieve optimal effectiveness by
forming x∗i for xi such that p(X∗

i = x∗i |C = c) simu-
lates the role of f(Xi = xi |C = c) by distinguishing
the class that gives xi high density from the class that
gives xi low density. In contrast, our study focuses
on the probability p(C = c |Xi = xi). Besides, Hsu
et al.’s analysis only addressed one-attribute classifi-
cation problems, and suggested that the analysis could
be extended to multi-attribute applications without in-
dicating how this might be so. In contrast, we argue
that the analysis involving only one attribute differs
from that involving multi-attributes. Furthermore,
Hsu et al.’s analysis suggested that ‘well-known’ dis-
cretization methods would have similar effectiveness
and would be unlikely to degrade the probability esti-
mation. Instead we supply an insight into why there
exists different degrees of effectiveness among differ-
ence methods, and discuss this difference in terms of
discretization bias and variance.

5. Conclusion

In this paper, we supply the proof of a theorem that
provides a new explanation of why discretization can
be effective for naive-Bayes classifiers by showing that
discretization will not alter the naive-Bayes estimate
as long as p(C = c |X∗

i = x∗i ) = p(C = c |Xi = xi).
We explore the factors that can affect the discretiza-
tion effectiveness in terms of the classification bias and
variance of the generated classifiers. We name this ef-
fect discretization bias and variance. We have argued
that the analysis of the bias-variance characteristics
of discretization provides insights into discretization
effectiveness. In particular, we have obtained new un-
derstandings of how discretization bias and variance
can be manipulated by adjusting interval size and in-
terval number. In short, we want to maximize the
number of intervals in order to minimize discretization
bias, but at the same time ensure that each interval
contains sufficient training instances in order to obtain
low discretization variance.

Another illuminating issue arising from our study is
that since the decision boundaries of a quantitative
attribute value depend on the values of other quanti-
tative attributes given a particular test instance, we
can not develop optimal discretization by any apri-
ori methodology, that is, by forming intervals prior
to the classification time. However, even if we adopt
a lazy methodology (Zheng & Webb, 2000), that is,
taking into account the values of other attributes dur-
ing classification time, we still cannot guarantee opti-
mal discretization unless we know the true probabil-
ity distribution of the quantitative attributes. These

insights reveal that, while discretization is desirable
when the true underlying probability density function
is not available, practical discretization techniques are
necessarily heuristic in nature. The holy grail of an op-
timal universal discretization strategy for naive-Bayes
learning is unobtainable.
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