Support Vector and Kernel Machines

Nello Cristianini
BIOwulf Technologies

nelle@support-vector.net

http://www.support-vector.net/tutorial.html

ICML 2001
A Little History

- SVMs introduced in COLT-92 by Boser, Guyon, Vapnik. Greatly developed ever since.
- Initially popularized in the NIPS community, now an important and active field of all Machine Learning research.
- Kernel Machines: large class of learning algorithms, SVMs a particular instance.
A Little History

- Annual workshop at NIPS
- Centralized website: www.kernel-machines.org
- Now: a large and diverse community: from machine learning, optimization, statistics, neural networks, functional analysis, etc. etc
- Successful applications in many fields (bioinformatics, text, handwriting recognition, etc)
- Fast expanding field, EVERYBODY WELCOME ! 😊
Preliminaries

- Task of this class of algorithms: detect and exploit complex patterns in data (e.g.: by clustering, classifying, ranking, cleaning, etc. the data)
- Typical problems: how to represent complex patterns; and how to exclude spurious (unstable) patterns (= overfitting)
- The first is a computational problem; the second a statistical problem.
Very Informal Reasoning

- The class of kernel methods implicitly defines the class of possible patterns by introducing a notion of similarity between data.
- Example: similarity between documents
 - By length
 - By topic
 - By language ...
- Choice of similarity ➔ Choice of relevant features
More formal reasoning

- Kernel methods exploit information about the inner products between data items
- Many standard algorithms can be rewritten so that they only require inner products between data (inputs)
- Kernel functions = inner products in some feature space (potentially very complex)
- If kernel given, no need to specify what features of the data are being used
Just in case …

- Inner product between vectors

$$\langle \bar{x}, \bar{z} \rangle = \sum_{i} x_i z_i$$

- Hyperplane:

$$\langle w, x \rangle + b = 0$$
Overview of the Tutorial

- Introduce basic concepts with extended example of Kernel Perceptron
- Derive Support Vector Machines
- Other kernel based algorithms
- Properties and Limitations of Kernels
- On Kernel Alignment
- On Optimizing Kernel Alignment
Parts I and II: overview

- Linear Learning Machines (LLM)
- Kernel Induced Feature Spaces
- Generalization Theory
- Optimization Theory
- Support Vector Machines (SVM)
Modularity

- Any kernel-based learning algorithm composed of two modules:
 - A general purpose learning machine
 - A problem specific kernel function
- Any K-B algorithm can be fitted with any kernel
- Kernels themselves can be constructed in a modular way
- Great for software engineering (and for analysis)

IMPORTANT CONCEPT
1-Linear Learning Machines

- Simplest case: classification. Decision function is a hyperplane in input space
- The Perceptron Algorithm (Rosenblatt, 57)

- Useful to analyze the Perceptron algorithm, before looking at SVMs and Kernel Methods in general
Basic Notation

- Input space \(x \in X \)
- Output space \(y \in Y = \{-1,+1\} \)
- Hypothesis \(h \in H \)
- Real-valued: \(f: X \rightarrow \mathbb{R} \)
- Training Set \(S = \{(x_1, y_1), \ldots, (x_i, y_i), \ldots\} \)
- Test error \(\epsilon \)
- Dot product \(\langle x, z \rangle \)
Perceptron

- Linear Separation of the input space

\[f(x) = \langle w, x \rangle + b \]

\[h(x) = \text{sign}(f(x)) \]
Perceptron Algorithm

Update rule (ignoring threshold):

- if \(y_i(\langle w_k, x_i \rangle) \leq 0 \) then

 \[w_k + 1 \leftarrow w_k + \eta y_i x_i \]

 \[k \leftarrow k + 1 \]
Observations

- Solution is a linear combination of training points
 \[w = \sum \alpha_i y_i x_i \]
 \[\alpha_i \geq 0 \]

- Only used informative points (mistake driven)
- The coefficient of a point in combination reflects its ‘difficulty’
Observations - 2

- Mistake bound:

\[M \leq \left(\frac{R}{\gamma} \right)^2 \]

- coefficients are non-negative
- possible to rewrite the algorithm using this alternative representation
Dual Representation

The decision function can be re-written as follows:

\[f(x) = \langle w, x \rangle + b = \sum \alpha_i y_i \langle x_i, x \rangle + b \]

\[w = \sum \alpha_i y_i x_i \]
Dual Representation

- And also the update rule can be rewritten as follows:

 \[\text{if } y_i \left(\sum \alpha_j y_j \langle x_j, x_i \rangle + b \right) \leq 0 \text{ then } \alpha_i \leftarrow \alpha_i + \eta \]

- Note: in dual representation, data appears only inside dot products
Duality: First Property of SVMs

- DUALITY is the first feature of Support Vector Machines
- SVMs are Linear Learning Machines represented in a dual fashion
 \[f(x) = \langle w, x \rangle + b = \sum \alpha_i y_i \langle x_i, x \rangle + b \]
- Data appear only within dot products (in decision function and in training algorithm)
Limitations of LLMs

Linear classifiers cannot deal with

- Non-linearly separable data
- Noisy data

- This formulation only deals with vectorial data
Non-Linear Classifiers

- One solution: creating a net of simple linear classifiers (neurons): a Neural Network (problems: local minima; many parameters; heuristics needed to train; etc)

- Other solution: map data into a richer feature space including non-linear features, then use a linear classifier
Learning in the Feature Space

- Map data into a feature space where they are linearly separable

\[x \rightarrow \phi(x) \]
Problems with Feature Space

- Working in high dimensional feature spaces solves the problem of expressing complex functions

BUT:

- There is a computational problem (working with very large vectors)
- And a generalization theory problem (curse of dimensionality)
Implicit Mapping to Feature Space

We will introduce Kernels:

- Solve the computational problem of working with many dimensions
- Can make it possible to use infinite dimensions – efficiently in time / space
- Other advantages, both practical and conceptual
Kernel-Induced Feature Spaces

- In the dual representation, the data points only appear inside dot products:

\[
f(x) = \sum \alpha_i y_i \langle \phi(x_i), \phi(x) \rangle + b
\]

- The dimensionality of space F not necessarily important. May not even know the map \(\phi \)
Kernels

- A function that returns the value of the dot product between the images of the two arguments

\[K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle \]

- Given a function \(K \), it is possible to verify that it is a kernel
Kernels

- One can use LLMs in a feature space by simply rewriting it in dual representation and replacing dot products with kernels:

\[
\langle x_1, x_2 \rangle \leftarrow K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle
\]
The Kernel Matrix

- *(aka the Gram matrix):*

<table>
<thead>
<tr>
<th></th>
<th>K(1,1)</th>
<th>K(1,2)</th>
<th>K(1,3)</th>
<th>...</th>
<th>K(1,m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(2,1)</td>
<td>K(2,2)</td>
<td>K(2,3)</td>
<td>...</td>
<td>K(2,m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>K(m,1)</td>
<td>K(m,2)</td>
<td>K(m,3)</td>
<td>...</td>
<td>K(m,m)</td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT CONCEPT
The Kernel Matrix

- The central structure in kernel machines
- Information ‘bottleneck’: contains all necessary information for the learning algorithm
- Fuses information about the data AND the kernel
- Many interesting properties:
Mercer’s Theorem

- The kernel matrix is Symmetric Positive Definite
- Any symmetric positive definite matrix can be regarded as a kernel matrix, that is as an inner product matrix in some space
More Formally: Mercer’s Theorem

- Every (semi) positive definite, symmetric function is a kernel: i.e. there exists a mapping \(\phi \) such that it is possible to write:

\[
K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle
\]

\[\text{Pos. Def. } \int K(x, z) f(x) f(z) \, dx \, dz \geq 0 \quad \forall f \in L_2\]
Mercer’s Theorem

- Eigenvalues expansion of Mercer’s Kernels:

\[K(x_1, x_2) = \sum_i \lambda_i \phi_i(x_1) \phi_i(x_2) \]

- That is: the eigenfunctions act as features!
Examples of Kernels

- Simple examples of kernels are:

\[K(x, z) = \langle x, z \rangle^d \]

\[K(x, z) = e^{-\|x-z\|^2 / 2\sigma} \]
Example: Polynomial Kernels

\[x = (x_1, x_2); \]
\[z = (z_1, z_2); \]

\[\langle x, z \rangle^2 = (x_1 z_1 + x_2 z_2)^2 = \]
\[= x_1^2 z_1^2 + x_2^2 z_2^2 + 2 x_1 z_1 x_2 z_2 = \]
\[= \langle (x_1^2, x_2^2, \sqrt{2} x_1 x_2), (z_1^2, z_2^2, \sqrt{2} z_1 z_2) \rangle = \]
\[= \langle \phi(x), \phi(z) \rangle \]
Example: Polynomial Kernels
Example: the two spirals

- Separated by a hyperplane in feature space (gaussian kernels)
Making Kernels

- The set of kernels is **closed under some operations**. If \(K, K' \) are kernels, then:
 - \(K+K' \) is a kernel
 - \(cK \) is a kernel, if \(c>0 \)
 - \(aK+bK' \) is a kernel, for \(a,b >0 \)
 - Etc etc etc……
 - can make complex kernels from simple ones: modularity !
Second Property of SVMs:

SVMs are Linear Learning Machines, that

- Use a dual representation

AND

- Operate in a kernel induced feature space

(that is: \(f(x) = \sum \alpha y_i \langle \phi(x_i), \phi(x) \rangle + b \)

is a linear function in the feature space implicitly defined by \(K \))
Kernels over General Structures

- Haussler, Watkins, etc: kernels over sets, over sequences, over trees, etc.
- Applied in text categorization, bioinformatics,
A bad kernel ...

- ... would be a kernel whose kernel matrix is mostly diagonal: all points orthogonal to each other, no clusters, no structure ...
No Free Kernel

- If mapping in a space with too many irrelevant features, kernel matrix becomes diagonal

- Need some prior knowledge of target so choose a good kernel
Other Kernel-based algorithms

- Note: other algorithms can use kernels, not just LLMs (e.g. clustering; PCA; etc). Dual representation often possible (in optimization problems, by Representer’s theorem).
BREAK
The Generalization Problem

- The curse of dimensionality: easy to overfit in high dimensional spaces
 (=regularities could be found in the training set that are accidental, that is that would not be found again in a test set)

- The SVM problem is ill posed (finding one hyperplane that separates the data: many such hyperplanes exist)

- Need principled way to choose the best possible hyperplane
The Generalization Problem

- Many methods exist to choose a good hyperplane (inductive principles)
- Bayes, statistical learning theory / pac, MDL, ...
- Each can be used, we will focus on a simple case motivated by statistical learning theory (will give the basic SVM)
Statistical (Computational) Learning Theory

- Generalization bounds on the risk of overfitting (in a p.a.c. setting: assumption of I.I.d. data; etc)
- Standard bounds from VC theory give upper and lower bound proportional to VC dimension
- VC dimension of LLMs proportional to dimension of space (can be huge)
Assumptions and Definitions

- distribution D over input space X
- train and test points drawn randomly (i.i.d.) from D
- training error of h: fraction of points in S misclassified by h
- test error of h: probability under D to misclassify a point x
- VC dimension: size of largest subset of X shattered by H (every dichotomy implemented)
VC Bounds

\[\varepsilon = \tilde{O}\left(\frac{VC}{m}\right) \]

\[VC = (\text{number of dimensions of } X) + 1 \]

Typically \(VC \gg m \), so not useful

Does not tell us which hyperplane to choose
Margin Based Bounds

\[\varepsilon = \tilde{O} \left(\frac{\left(\frac{R}{\gamma} \right)^2}{m} \right)\]

\[\gamma = \min_i \frac{y_i f(x_i)}{\|f\|}\]

Note: also compression bounds exist; and online bounds.
Margin Based Bounds

- (The worst case bound still holds, but if lucky (margin is large)) the other bound can be applied and better generalization can be achieved:

$$\varepsilon = \tilde{O}\left(\frac{(R/\gamma)^2}{m}\right)$$

- Best hyperplane: the maximal margin one
- Margin is large is kernel chosen well
Maximal Margin Classifier

- Minimize the risk of overfitting by choosing the maximal margin hyperplane in feature space
- Third feature of SVMs: maximize the margin
- SVMs control capacity by increasing the margin, not by reducing the number of degrees of freedom (dimension free capacity control).
Two kinds of margin

- Functional and geometric margin:

\[
\text{funct} = \min y_i f(x_i)
\]

\[
\text{geom} = \min \frac{y_i f(x_i)}{\|f\|}
\]
Two kinds of margin

- γ (gamma)
- $f(x)$
- 1
Max Margin = Minimal Norm

- If we fix the functional margin to 1, the geometric margin equal $\frac{1}{||w||}$
- Hence, maximize the margin by minimizing the norm
Max Margin = Minimal Norm

Distance between
The two convex hulls

\[\langle w, x^+ \rangle + b = +1 \]
\[\langle w, x^- \rangle + b = -1 \]
\[\langle w, (x^+ - x^-) \rangle = 2 \]
\[\frac{\langle w, (x^+ - x^-) \rangle}{\|w\|} = \frac{2}{\|w\|} \]
The primal problem

- Minimize:

 subject to:

\[
\langle w, w \rangle \\
\sum_{i} y_i (\langle w, x_i \rangle + b) \geq 1
\]
Optimization Theory

- The problem of finding the maximal margin hyperplane: constrained optimization (quadratic programming)
- Use Lagrange theory (or Kuhn-Tucker Theory)
- Lagrangian:

\[
\frac{1}{2} \langle w, w \rangle - \sum \alpha_i y_i [(\langle w, x_i \rangle + b) - 1]
\]

\[
\alpha \geq 0
\]
From Primal to Dual

\[L(w) = \frac{1}{2} \langle w, w \rangle - \sum \alpha_i y_i [(\langle w, x_i \rangle + b) - 1] \]

\(\alpha_i \geq 0 \)

Differentiate and substitute:
\[\frac{\partial L}{\partial b} = 0 \]
\[\frac{\partial L}{\partial w} = 0 \]
The Dual Problem

- Maximize: \(W(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \)

- Subject to: \(\alpha_i \geq 0 \)
 \[\sum_i \alpha_i y_i = 0 \]

- The duality again! Can use kernels!
Convexity

- This is a Quadratic Optimization problem: convex, no local minima (second effect of Mercer’s conditions)
- Solvable in polynomial time …
- (convexity is another fundamental property of SVMs)
Kuhn-Tucker Theorem

Properties of the solution:

- Duality: can use kernels
- KKT conditions: \(\alpha_i [y_i (\langle w, x_i \rangle + b) - 1] = 0 \)
- Sparseness: only the points nearest to the hyperplane (margin = 1) have positive weight
 \[w = \sum \alpha_i y_i x_i \]
- They are called support vectors
KKT Conditions Imply Sparseness

Sparseness:
another fundamental property of SVMs
Properties of SVMs - Summary

- Duality
- Kernels
- Margin
- Convexity
- Sparseness
Dealing with noise

In the case of non-separable data in feature space, the margin distribution can be optimized

\[y_i(\langle w, x_i \rangle + b) \geq 1 - \xi_i \]

\[\varepsilon \leq \frac{1}{m} \left(R + \sqrt{\sum \xi_i^2} \right)^2 \]
The Soft-Margin Classifier

Minimize:

\[
\frac{1}{2} \langle w, w \rangle + C \sum_i \xi_i
\]

Or:

\[
\frac{1}{2} \langle w, w \rangle + C \sum_i \xi_i^2
\]

Subject to:

\[
y_i(\langle w, x_i \rangle + b) \geq 1 - \xi_i
\]
Slack Variables

\[y_i(\langle w, x_i \rangle + b) \geq 1 - \xi_i \]

\[\varepsilon \leq \frac{1}{m} \left(R + \sqrt{\sum \xi_i^2} \right)^2 \]
Soft Margin-Dual Lagrangian

- Box constraints

\[W(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \]

\[0 \leq \alpha_i \leq C \]

\[\sum \alpha_i y_i = 0 \]

- Diagonal

\[\sum \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle - \frac{1}{2C} \sum \alpha_i \alpha_j \]

\[0 \leq \alpha_i \]

\[\sum_i \alpha_i y_i \geq 0 \]
The regression case

- For regression, all the above properties are retained, introducing epsilon-insensitive loss:

\[y_i - \langle w, x_i \rangle + b \]
Regression: the ε-tube
Implementation Techniques

- Maximizing a quadratic function, subject to a linear equality constraint (and inequalities as well)

\[W(\alpha) = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j) \]

\[\alpha_i \geq 0 \]

\[\sum_{i} \alpha_i y_i = 0 \]
Simple Approximation

- Initially complex QP packages were used.
- Stochastic Gradient Ascent (sequentially update 1 weight at the time) gives excellent approximation in most cases

\[\alpha_i \leftarrow \alpha_i + \frac{1}{K(x_i, x_i)} \left(1 - y_i \sum \alpha_i y_i K(x_i, x_j) \right) \]
Full Solution: S.M.O.

- SMO: update two weights simultaneously
- Realizes gradient descent without leaving the linear constraint (J. Platt).

- Online versions exist (Li-Long; Gentile)
Other “kernelized” Algorithms

- Adatron, nearest neighbour, fisher discriminant, bayes classifier, ridge regression, etc. etc

- Much work in past years into designing kernel based algorithms

- Now: more work on designing good kernels (for any algorithm)
On Combining Kernels

- When is it advantageous to combine kernels?
- Too many features leads to overfitting also in kernel methods
- Kernel combination needs to be based on principles
- Alignment
Kernel Alignment

- Notion of similarity between kernels: Alignment (\(=\) similarity between Gram matrices)

\[
A(K_1, K_2) = \frac{\langle K_1, K_2 \rangle}{\sqrt{\langle K_1, K_1 \rangle \langle K_2, K_2 \rangle}}
\]
Many interpretations

- As measure of clustering in data
- As Correlation coefficient between ‘oracles’

- Basic idea: the ‘ultimate’ kernel should be YY, that is should be given by the labels vector (after all: target is the only relevant feature !)
The ideal kernel

\[YY' = \]

\[
\begin{array}{cccccc}
1 & 1 & -1 & \ldots & -1 \\
1 & 1 & -1 & \ldots & -1 \\
-1 & -1 & 1 & \quad & 1 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-1 & -1 & 1 & \ldots & 1 \\
\end{array}
\]
Combining Kernels

- Alignment in increased by combining kernels that are aligned to the target and not aligned to each other.

\[A(K_1, YY') = \frac{\langle K_1, YY' \rangle}{\sqrt{\langle K_1, K_1 \rangle \langle YY', YY' \rangle}} \]
Spectral Machines

- Can (approximately) maximize the alignment of a set of labels to a given kernel
- By solving this problem:
 \[y = \arg \max \frac{yK_y}{yy'} \]
 \[y_i \in \{-1,+1\} \]
- Approximated by principal eigenvector (thresholded) (see courant-hilbert theorem)
Courant-Hilbert theorem

- A: symmetric and positive definite,
- Principal Eigenvalue / Eigenvector characterized by:

$$\lambda = \max_{\nu} \frac{\nu A \nu}{\nu \nu'}$$
Optimizing Kernel Alignment

- One can either adapt the kernel to the labels or vice versa
- In the first case: model selection method
- Second case: clustering / transduction method
Applications of SVMs

- Bioinformatics
- Machine Vision
- Text Categorization
- Handwritten Character Recognition
- Time series analysis
Text Kernels

- Joachims (bag of words)
- Latent semantic kernels (icml2001)
- String matching kernels
- ...
- See KerMIT project ...
Bioinformatics

- Gene Expression
- Protein sequences
- Phylogenetic Information
- Promoters
- ...

www.support-vector.net
Conclusions:

- Much more than just a replacement for neural networks. 😊
- General and rich class of pattern recognition methods

Book on SVMs: www.support-vector.net
- Kernel machines website
 www.kernel-machines.org
- www.NeuroCOLT.org