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This article reviews five approximate statistical tests for determining
whether one learning algorithm outperforms another on a particular learn-
ing task. These tests are compared experimentally to determine their prob-
ability of incorrectly detecting a difference when no difference exists
(type I error). Two widely used statistical tests are shown to have high
probability of type I error in certain situations and should never be used:
a test for the difference of two proportions and a paired-differences t test
based on taking several random train-test splits. A third test, a paired-
differences t test based on 10-fold cross-validation, exhibits somewhat
elevated probability of type I error. A fourth test, McNemar’s test, is
shown to have low type I error. The fifth test is a new test, 5 × 2 cv,
based on five iterations of twofold cross-validation. Experiments show
that this test also has acceptable type I error. The article also measures
the power (ability to detect algorithm differences when they do exist) of
these tests. The cross-validated t test is the most powerful. The 5×2 cv test
is shown to be slightly more powerful than McNemar’s test. The choice
of the best test is determined by the computational cost of running the
learning algorithm. For algorithms that can be executed only once, Mc-
Nemar’s test is the only test with acceptable type I error. For algorithms
that can be executed 10 times, the 5×2 cv test is recommended, because it
is slightly more powerful and because it directly measures variation due
to the choice of training set.

1 Introduction

In the research, development, and application of machine learning algo-
rithms for classification tasks, many questions arise for which statistical
methods are needed. The purpose of this article is to investigate one of these
questions, demonstrate that existing statistical methods are inadequate for
this question, and propose a new statistical test that shows acceptable per-
formance in initial experiments.

To understand the question raised in this article, it is helpful to consider a
taxonomy of the different kinds of statistical questions that arise in machine
learning. Figure 1 gives a taxonomy of nine statistical questions.
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Let us begin at the root of the tree. The first issue to consider is whether
we are studying only a single application domain or multiple domains. In
most applied research, there is a single domain of interest, and the goal
is to find the best classifier or the best learning algorithm to apply in that
domain. However, a fundamental goal of research in machine learning is
to find learning algorithms that work well over a wide range of application
domains. We will return to this issue; for the moment, let us consider the
single-domain case.

Within a single domain, there are two different sets of questions, depend-
ing on whether we are analyzing classifiers or algorithms. A classifier is a
function that, given an input example, assigns that example to one of K
classes. A learning algorithm is a function that, given a set of examples and
their classes, constructs a classifier. In a particular application setting, our
primary goal is usually to find the best classifier and estimate its accuracy
with future examples. Suppose we are working for a medical instrumenta-
tion company and wish to manufacture and sell an instrument for classifying
blood cells. At the time we are designing the instrument, we could gather
a large collection of blood cells and have a human expert classify each cell.
We could then apply a learning algorithm to produce a classifier from this
set of classified cells. The classifier would be implemented in the instrument
and sold. We want our instrument to contain the most accurate classifier we
can find.

There are some applications, however, where we must select the best
learning algorithm rather than find the best classifier. For example, suppose
we want to sell an e-mail system that learns to recognize and filter junk
mail. Whenever the user receives an e-mail message that he considers junk
mail, he will flag that message. Periodically, a learning algorithm included
in the program will analyze the accumulated examples of junk and nonjunk
e-mail and update its filtering rules. Our job is to determine which learning
algorithm to include in the program.

The next level of the taxonomy distinguishes between two fundamental
tasks: estimating accuracy and choosing between classifiers (or algorithms).
When we market our blood cell diagnosis system, we would like to make
a claim about its accuracy. How can we measure this accuracy? And, of
course, when we design the system, we want to choose the best classifier
from some set of available classifiers.

The lowest level of the taxonomy concerns the amount of data available.
If we have a large amount of data, then we can set some of them aside to serve
as a test set for evaluating classifiers. Much simpler statistical methods can
be applied in this case. However, in most situations, the amount of data is
limited, and we need to use all we have as input to our learning algorithms.
This means that we must use some form of resampling (i.e., cross-validation
or the bootstrap) to perform the statistical analysis.

Now that we have reviewed the general structure of the taxonomy, let’s
consider the nine statistical questions. We assume that all data points (exam-
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Figure 1: A taxonomy of statistical questions in machine learning. The boxed
node (Question 8) is the subject of this article.

ples) are drawn independently from a fixed probability distribution defined
by the particular application problem.

Question 1: Suppose we are given a large sample of data and a classifier C.
The classifier C may have been constructed using part of the data, but there
are enough data remaining for a separate test set. Hence, we can measure
the accuracy of C on the test set and construct a binomial confidence interval
(Snedecor & Cochran, 1989; Efron & Tibshirani, 1993; Kohavi, 1995). Note
that in Question 1, the classifier could have been produced by any method
(e.g., interviewing an expert); it need not have been produced by a learning
algorithm.

Question 2: Given a small data set, S, suppose we apply learning algo-
rithm A to S to construct classifier CA. How accurately will CA classify new
examples? Because we have no separate test set, there is no direct way to
answer this question. A frequently applied strategy is to convert this ques-
tion into Question 6: Can we predict the accuracy of algorithm A when it is
trained on randomly selected data sets of (approximately) the same size as
S? If so, then we can predict the accuracy of CA, which was obtained from
training on S.

Question 3: Given two classifiers CA and CB and enough data for a sep-
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arate test set, determine which classifier will be more accurate on new test
examples. This question can be answered by measuring the accuracy of each
classifier on the separate test set and applying McNemar’s test, which will
be described below.

Question 4: Given two classifiers, CA and CB, produced by feeding a small
data set S to two learning algorithms, A and B, which classifier will be more
accurate in classifying new examples? Again, because we have no separate
set of test data, we cannot answer this question directly. Some researchers
have taken the approach of converting this problem into a question about
learning algorithms (Question 8). If we can determine which algorithm usu-
ally produces more accurate classifiers (when trained on data sets of approx-
imately the same size), then we can select the classifier (CA or CB) created
by that algorithm.

Question 5: Given a learning algorithm A and a large data set S, what is
the accuracy of the classifiers produced by A when trained on new training
sets of a specified size m? This question has not received much attention
in the literature. One approach, advocated by the DELVE project (Hinton,
Neal, Tibshirani, & DELVE team members, 1995; Rasmussen, 1996), is to
subdivide S into a test set and several disjoint training sets of size m. Then
A is trained on each of the training sets, and the resulting classifiers are
tested on the test set. The average performance on the test set estimates the
accuracy of new runs.

Question 6: Given a learning algorithm A and a small data set S, what
is the accuracy of the classifiers produced by A when A is trained on new
training sets of the same size as S? Kohavi (1995) shows that stratified 10-
fold cross-validation produces fairly good estimates in this case. Note that
in any resampling approach, we cannot train A on training sets of exactly
the same size as S. Instead, we train on data sets that have slightly fewer
examples (e.g., 90% of the size of S in 10-fold cross-validation) and rely
on the assumption that the performance of learning algorithms changes
smoothly with changes in the size of the training data. This assumption
can be checked experimentally (by performing additional cross-validation
studies) with even smaller training sets, but it cannot be checked directly for
training sets of the size of S. Results on the shape of learning curves show
that in some cases, this smoothness assumption will be violated (Haussler,
Kearns, Seung, & Tishby, 1994). Nonetheless, it is observed to hold experi-
mentally in most applications.

Question 7: Given two learning algorithms A and B and a large data set
S, which algorithm will produce more accurate classifiers when trained on
data sets of a specified size m? This question has not received much attention,
although the DELVE team has studied this question for regression problems.
They divide S into several disjoint training sets and a single test set. Each
algorithm is trained on each training set, and all resulting classifiers are
tested on the test set. An analysis of variance can then be performed that
includes terms for the choice of learning algorithm, the choice of the training
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set, and each individual test example. The Quasi-F test (Lindman, 1992)
is applied to determine whether the effect due to the choice of learning
algorithms is significantly nonzero.

Question 8: Given two learning algorithms A and B and a small data set
S, which algorithm will produce more accurate classifiers when trained on
data sets of the same size as S? The purpose of this article is to describe
and compare several statistical tests for answering this question. Because
S is small, it will be necessary to use holdout and resampling methods. As
mentioned regarding Question 6, this means that we cannot answer this
question exactly without making the assumption that the performance of
the two learning algorithms changes smoothly with changes in the size of the
training set. Specifically, we will need to assume that the relative difference
in performance of the two algorithms changes slowly with changes in the
size of the training set.

Question 9: Given two learning algorithms A and B and data sets from
several domains, which algorithm will produce more accurate classifiers
when trained on examples from new domains? This is perhaps the most
fundamental and difficult question in machine learning. Some researchers
have applied a simple sign test (or the Wilcoxon signed-ranks test) to try to
answer this question, based on single runs or cross-validation-based esti-
mates, but these tests do not take into account the uncertainty of the individ-
ual comparisons. Effectively, we want to combine the results from several
answers to Question 8, where each answer has an associated uncertainty.
This is an important question for future research.

Questions 7, 8, and 9 are the most important for experimental research
on learning algorithms. When someone develops a new learning algorithm
(or a modification to an existing algorithm), answers to these questions can
determine whether the new algorithm is better than existing algorithms.
Unfortunately, many data sets used in experimental research are too small
to allow posing Question 7. Hence, this article focuses on developed good
statistical tests for Question 8. We define and compare five statistical tests
for this question.

Before proceeding with the derivation of these statistical tests, it is worth
noting that each of the questions posed can be extended beyond classifica-
tion algorithms and misclassification rates. For example, in many decision-
making settings, it is important to estimate the conditional probability that
a new example belongs to each of the K classes. One measure of the accu-
racy of probability estimates is the log loss; Questions 1, 2, 5, and 6 can be
rephrased in terms of determining the expected log loss of a classifier or an
algorithm. Similarly, Questions 3, 4, 7, and 8 can be rephrased in terms of
determining which classifier or algorithm has the smaller log loss. We are
unaware of any statistical research specifically addressing these questions
in the case of log loss, however.

In many neural network applications, the task is to predict a continuous
response variable. In these problems, the squared error is usually the nat-
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ural loss function, and Questions 1, 2, 5, and 6 can be rephrased in terms
of determining the expected mean squared error of a predictor or of an al-
gorithm. Similarly, Questions 3, 4, 7, and 8 can be rephrased in terms of
determining which predictor or algorithm has the smaller mean squared
error. Question 1 can be addressed by constructing a confidence interval
based on the normal or t distribution (depending on the size of the test set).
Question 3 can be addressed by constructing a confidence interval for the
expected difference. The DELVE project has developed analysis-of-variance
techniques for Questions 5 and 7. Appropriate statistical tests for the small-
sample questions (2, 4, 6, and 8) are still not well established.

The statistical tests for regression methods may suggest ways of design-
ing statistical tests for the log loss case, an important area for future research.

To design and evaluate statistical tests, the first step is to identify the
sources of variation that must be controlled by each test. For the case we are
considering, there are four important sources of variation.

First is the random variation in the selection of the test data used to eval-
uate the learning algorithms. On any particular randomly drawn test data
set, one classifier may outperform another even though on the whole pop-
ulation, the two classifiers would perform identically. This is a particularly
pressing problem for small test data sets.

The second source of random variation results from the selection of the
training data. On any particular randomly drawn training set, one algorithm
may outperform another even though, on the average, the two algorithms
have the same accuracy. Even small changes to the training set (such as
adding or deleting a few data points) may cause large changes in the classi-
fier produced by a learning algorithm. Breiman (1994, 1996) has called this
behavior “instability,” and he has shown that this is a serious problem for
the decision tree algorithms, such as CART (Breiman, Friedman, Olshen, &
Stone, 1984).

A third source of variance can be internal randomness in the learning
algorithm. Consider, for example, the widely used backpropagation algo-
rithm for training feedforward neural networks. This algorithm is usually
initialized with a set of random weights, which it then improves. The result-
ing learned network depends critically on the random starting state (Kolen
& Pollack, 1991). In this case, even if the training data are not changed, the
algorithm is likely to produce a different hypothesis if it is executed again
from a different random starting state.

The last source of random variation that must be handled by statistical
tests is random classification error. If a fixed fraction η of the test data points
is randomly mislabeled, then no learning algorithm can achieve an error
rate of less than η.

A good statistical test should not be fooled by these sources of variation.
The test should conclude that the two algorithms are different if and only if
their percentage of correct classifications would be different, on the average,
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when trained on a training set of a given fixed size and tested on all data
points in the population.

To accomplish this, a statistical testing procedure must account for these
sources of variation. To account for test data variation and the possibility of
random classification error, the statistical procedure must consider the size
of the test set and the consequences of changes in it. To account for train-
ing data variation and internal randomness, the statistical procedure must
execute the learning algorithm multiple times and measure the variation in
accuracy of the resulting classifiers.

This article begins by describing five statistical tests bearing on Question
8: McNemar’s test, a test for the difference of two proportions, the resam-
pled t test, the cross-validated t test, and a new test called the 5× 2 cv test.
The article then describes a simulation study that seeks to measure the prob-
ability that each test will incorrectly detect a difference when no difference
exists (type I error). The results of the simulation study show that only Mc-
Nemar’s test, the cross-validated t test, and the 5×2 cv test have acceptable
type I error. The type I error of the resampled t test is very bad and the test is
very expensive computationally, so we do not consider it further. The type
I error of the difference-of-proportions test is unacceptable in some cases,
but it is very cheap to evaluate, so we retained it for further study.

The simulation study is somewhat idealized and does not address all
aspects of training data variation. To obtain a more realistic evaluation of the
four remaining tests, we conducted a set of experiments using real learning
algorithms on realistic data sets. We measured both the type I error and
the power of the tests. The results show that the cross-validated t test has
consistently elevated type I error. The difference-of-proportions test has
acceptable type I error, but low power. Both of the remaining two tests
have good type I error and reasonable power. The 5 × 2 cv test is slightly
more powerful than McNemar’s test, but also 10 times more expensive to
perform. Hence, we conclude that the 5 × 2 cv test is the test of choice for
inexpensive learning algorithms but that McNemar’s test is better for more
expensive algorithms.

2 Formal Preliminaries

We will assume that there exists a set X of possible data points, called the
population. There also exists some target function, f , that classifies each x ∈ X
into one of K classes. Without loss of generality, we will assume that K =
2, although none of the results in this article depend on this assumption,
since our only concern will be whether an example is classified correctly or
incorrectly.

In an application setting, a sample S is drawn randomly from X according
to a fixed probability distribution D. A collection of training examples is
constructed by labeling each x ∈ S according to f (x). Each training example
therefore has the form 〈x, f (x)〉. In some applications, there may be a source
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of classification noise that randomly sets the label to an incorrect value.
A learning algorithm A takes as input a set of training examples R and

outputs a classifier f̂ . The true error rate of that classifier is the probability
that f̂ will misclassify an example drawn randomly from X according to D.
In practice, this error rate is estimated by taking our available sample S and
subdividing it into a training set R and a test set T. The error rate of f̂ on T
provides an estimate of the true error rate of f̂ on the population X.

The null hypothesis to be tested is that for a randomly drawn training set
R of fixed size; the two learning algorithms will have the same error rate on
a test example randomly drawn from X, where all random draws are made
according to distribution D. Let f̂A be the classifier output by algorithm A
trained on training set R, and let f̂B be the classifier output by algorithm B
trained on R. Then the null hypothesis can be written as

PrR,x[ f̂A(x) = f (x)] = PrR,x[ f̂B(x) = f (x)],

where the notation PrR,x indicates the probability taken with respect to the
random draws of the training set R and the test example x.

3 Five Statistical Tests

We now describe the statistical tests that are the main subject of this pa-
per. We begin with simple holdout tests and then consider tests based on
resampling from the available data.

3.1 McNemar’s test. To apply McNemar’s test (Everitt, 1977), we divide
our available sample of data S into a training set R and a test set T. We train
both algorithms A and B on the training set, yielding classifiers f̂A and f̂B.
We then test these classifiers on the test set. For each example x ∈ T, we
record how it was classified and construct the following contingency table:

Number of examples Number of examples
misclassified by both f̂A and f̂B misclassified by f̂A but not by f̂B

Number of examples Number of examples
misclassified by f̂B but not by f̂A misclassified by neither f̂A nor f̂B.

We will use the notation

n00 n01
n10 n11

where n = n00 + n01 + n10 + n11 is the total number of examples in the test
set T.

Under the null hypothesis, the two algorithms should have the same
error rate, which means that n01 = n10. McNemar’s test is based on a χ2 test
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for goodness of fit that compares the distribution of counts expected under
the null hypothesis to the observed counts. The expected counts under the
null hypothesis are

n00 (n01 + n10)/2
(n01 + n10)/2 n11

The following statistic is distributed (approximately) as χ2 with 1 degree
of freedom; it incorporates a “continuity correction” term (of −1 in the
numerator) to account for the fact that the statistic is discrete while the χ2

distribution is continuous:

(|n01 − n10| − 1)2

n01 + n10
.

If the null hypothesis is correct, then the probability that this quantity is
greater than χ2

1,0.95 = 3.841459 is less than 0.05. So we may reject the null
hypothesis in favor of the hypothesis that the two algorithms have different
performance when trained on the particular training set R.

Note, however, that this test has two shortcomings with regard to Ques-
tion 8. First, it does not directly measure variability due to the choice of the
training set or the internal randomness of the learning algorithm. A single
training set R is chosen, and the algorithms are compared using that training
set only. Hence, McNemar’s test should be applied only if we believe these
sources of variability are small. Second, it does not directly compare the
performance of the algorithms on training sets of size |S|, but only on sets of
size |R|, which must be substantially smaller than |S| to ensure a sufficiently
large test set. Hence, we must assume that the relative difference observed
on training sets of size |R|will still hold for training sets of size |S|.

3.2 A Test for the Difference of Two Proportions. A second simple sta-
tistical test is based on measuring the difference between the error rate of
algorithm A and the error rate of algorithm B (Snedecor & Cochran, 1989).
Specifically, let pA = (n00 + n01)/n be the proportion of test examples incor-
rectly classified by algorithm A, and let pB = (n00+n10)/n be the proportion
of test examples incorrectly classified by algorithm B. The assumption un-
derlying this statistical test is that when algorithm A classifies an example x
from the test set T, the probability of misclassification is pA. Hence, the num-
ber of misclassifications of n test examples is a binomial random variable
with mean npA and variance pA(1− pA)n.

The binomial distribution can be well approximated by a normal distri-
bution for reasonable values of n. Furthermore, the difference between two
independent normally distributed random variables is itself normally dis-
tributed. Hence, the quantity pA−pB can be viewed as normally distributed
if we assume that the measured error rates pA and pB are independent. Un-
der the null hypothesis, this will have a mean of zero and a standard error
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of

se =
√

2p(1− p)
n

,

where p = (pA + pB)/2 is the average of the two error probabilities.
From this analysis, we obtain the statistic

z = pA − pB√
2p(1− p)/n

,

which has (approximately) a standard normal distribution. We can reject the
null hypothesis if |z| > Z0.975 = 1.96 (for a two-sided test with probability
of incorrectly rejecting the null hypothesis of 0.05).

This test has been used by many researchers, including the author (Diet-
terich, Hild, & Bakiri, 1995). However, there are several problems with this
test. First, because pA and pB are each measured on the same test set T, they
are not independent. Second, the test shares the drawbacks of McNemar’s
test: it does not measure variation due to the choice of training set or inter-
nal variation of the learning algorithm, and it does not directly measure the
performance of the algorithms on training sets of size |S|, but rather on the
smaller training set of size |R|.

The lack of independence of pA and pB can be corrected by changing the
estimate of the standard error to be

se′ =
√

n01 + n10

n2 .

This estimate focuses on the probability of disagreement of the two algo-
rithms (Snedecor & Cochran, 1989). The resulting z statistic can be written
as

z′ = |n01 − n10| − 1√
n01 + n10

,

which we can recognize as the square root of the χ2 statistic in McNemar’s
test.

In this article, we have experimentally analyzed the uncorrected z statis-
tic, since this statistic is in current use and we wanted to determine how
badly the (incorrect) independence assumption affects the accuracy of the
test.

For small sample sizes, there are exact versions of both McNemar’s test
and the test for the difference of two proportions that avoid the χ2 and
normal approximations.

3.3 The Resampled Paired t Test. The next statistical test we consider
is currently the most popular in the machine learning literature. A series
of (usually) 30 trials is conducted. In each trial, the available sample S is
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randomly divided into a training set R of a specified size (e.g., typically two-
thirds of the data) and a test set T. Learning algorithms A and B are trained
on R, and the resulting classifiers are tested on T. Let p(i)A (respectively, p(i)B )
be the observed proportion of test examples misclassified by algorithm A
(respectively B) during trial i. If we assume that the 30 differences p(i) =
p(i)A − p(i)B were drawn independently from a normal distribution, then we
can apply Student’s t test, by computing the statistic

t = p · √n√∑n

i=1
(p(i)−p)2

n−1

,

where p = 1
n

∑n
i=1 p(i). Under the null hypothesis, this statistic has a t distri-

bution with n− 1 degrees of freedom. For 30 trials, the null hypothesis can
be rejected if |t| > t29,0.975 = 2.04523.

There are many potential drawbacks of this approach. First, the individ-
ual differences p(i) will not have a normal distribution, because p(i)A and p(i)B
are not independent. Second, the p(i)’s are not independent, because the test
sets in the trials overlap (and the training sets in the trials overlap as well).
We will see below that these violations of the assumptions underlying the t
test cause severe problems that make this test unsafe to use.

3.4 The k-Fold Cross-Validated Paired t Test. This test is identical to
the previous one except that instead of constructing each pair of training
and test sets by randomly dividing S, we instead randomly divide S into k
disjoint sets of equal size, T1, . . . , Tk. We then conduct k trials. In each trial,
the test set is Ti, and the training set is the union of all of the other Tj, j 6= i.
The same t statistic is computed.

The advantage of this approach is that each test set is independent of the
others. However, this test still suffers from the problem that the training sets
overlap. In a 10-fold cross-validation, each pair of training sets shares 80% of
the examples. This overlap may prevent this statistical test from obtaining
a good estimate of the amount of variation that would be observed if each
training set were completely independent of previous training sets.

To illustrate this point, consider the nearest-neighbor algorithm. Suppose
our training set contains two clusters of points: a large cluster belonging to
one class and a small cluster belonging to the other class. If we perform
a twofold cross-validation, we must subdivide the training data into two
disjoint sets. If all of the points in the smaller cluster go into one of those two
sets, then both runs of the nearest-neighbor algorithm will have elevated
error rates, because when the small cluster is in the test set, every point in
it will be misclassified. When the small cluster is in the training set, some
of its points may (incorrectly) be treated as nearest neighbors of test set
points, which also increases the error rate. Conversely, if the small cluster
is evenly divided between the two sets, then the error rates will improve,
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because for each test point, there will be a corresponding nearby training
point that will provide the correct classification. Either way, we can see that
the performance of the two folds of the cross-validation will be correlated
rather than independent.

We verified this experimentally for 10-fold cross-validation on the letter
recognition task (300 total training examples) in an experiment where the
null hypothesis was true (described below). We measured the correlation
coefficient between the differences in error rates on two folds within a cross-
validation, p(i) and p(j). The observed value was 0.03778, which according
to a t test is significantly different from 0 with p < 10−10. On the other
hand, if the error rates p(i) and p(j) are drawn from independent 10-fold
cross-validations (i.e., on independent data sets), the correlation coefficient
is −0.00014, which according to a t test is not significantly different from
zero.

3.5 The 5 × 2 cv Paired t Test. In some initial experiments with the
k-fold cross-validated paired t test, we attempted to determine why the t
statistic was too large in some cases. The numerator of the t statistic estimates
the mean difference in the performance of the two algorithms (over the k
folds), while the denominator estimates the variance of these differences.
With synthetic data, we constructed k nonoverlapping training sets and
measured the mean and variance on those training sets. We found that while
the variance was slightly underestimated when the training sets overlapped,
the means were occasionally very poorly estimated, and this was the cause
of the large t values. The problem can be traced to the correlations between
the different folds, as described above.

We found that if we replaced the numerator of the t statistic with the
observed difference from a single fold of the k-fold cross-validation, the
statistic became well behaved. This led us to the 5× 2 cv paired t test.

In this test, we perform five replications of twofold cross-validation. In
each replication, the available data are randomly partitioned into two equal-
sized sets, S1 and S2. Each learning algorithm (A or B) is trained on each set
and tested on the other set. This produces four error estimates: p(1)A and p(1)B

(trained on S1 and tested on S2) and p(2)A and p(2)B (trained on S2 and tested
on S1). Subtracting corresponding error estimates gives us two estimated
differences: p(1) = p(1)A −p(1)B and p(2) = p(2)A −p(2)B . From these two differences,
the estimated variance is s2 = (p(1)−p)2+(p(2)−p)2, where p = (p(1)+p(2))/2.
Let s2

i be the variance computed from the ith replication, and let p(1)1 be the
p(1) from the very first of the five replications. Then define the following
statistic,

t̃ = p(1)1√
1
5
∑5

i=1 s2
i

,
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which we will call the 5 × 2 cv t̃ statistic. We claim that under the null
hypothesis, t̃ has approximately a t distribution with 5 degrees of freedom.
The argument goes as follows.

Let A be a standard normal random variable and B be a χ2 random
variable with n− 1 degrees of freedom. Then by definition, the quantity

A√
B/(n− 1)

(3.1)

has a t distribution with n−1 degrees of freedom if A and B are independent.
The usual t statistic is derived by starting with a set of random variables

X1, . . . ,Xn having a normal distribution with mean µ and variance σ 2. Let
X = 1

n

∑
i Xi be the sample mean and S2 = ∑

i(Xi − X)2 be the sum of
squared deviations from the mean. Then define

A = √n(X − µ)/σ
B = S2/σ 2.

Well-known results from probability theory state that A has a standard nor-
mal distribution and B has aχ2 distribution with n−1 degrees of freedom. A
more remarkable result from probability theory is that A and B are also inde-
pendent, provided the original Xi’s were drawn from a normal distribution.
Hence, we can plug them into equation 3.1 as follows:

t = A√
B/(n− 1)

=
√

n(X − µ)/σ√
S2/(σ 2 · (n− 1))

=
√

n(X − µ)√
S2/(n− 1)

.

This gives the usual definition of the t statistic when µ = 0.
We can construct t̃ by analogy as follows. Under the null hypothesis, the

numerator of t̃, p(1)1 , is the difference of two identically distributed propor-
tions, so we can safely treat it as an approximately normal random variable
with zero mean and unknown standard deviation σ if the underlying test
set contained at least 30 points. Hence, let A = p(1)1 /σ .

Also under the null hypothesis, s2
i /σ

2 has a χ2 distribution with 1 de-
gree of freedom if we make the additional assumption that p(1)i and p(2)i are
independent. This assumption is false, as we have seen, because these two
differences of proportions are measured on the opposite folds of a twofold
cross-validation. Still, the assumption of independence is probably more
appropriate for twofold cross-validation than for 10-fold cross-validation,
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because in the twofold case, the training sets are completely nonoverlapping
(and, as always in cross-validation, the test sets are nonoverlapping).

(We chose twofold cross-validation because it gives large test sets and
disjoint training sets. The large test set is needed because we are using
only one paired difference p(1)1 in t̃. The disjoint training sets help make
p(1)i and p(2)i more independent. A drawback, of course, is that the learning
algorithms are trained on training sets half of the size of the training sets
for which, under Question 8, we seek their relative performance.)

We could set B = s2
1/σ

2, but when we tested this experimentally, we
found that the resulting estimate of the variance was very noisy, and often
zero. In similar situations, others have found that combining the results of
multiple cross-validations can help stabilize an estimate, so we perform five
twofold cross-validations and define

B =
(

5∑
i=1

s2
i

)/
σ 2.

If we assume that the s2
i from each twofold cross-validation are indepen-

dent of each other, then B is the sum of five independent random variables,
each having a χ2 distribution with 1 degree of freedom. By the summation
property of the χ2 distribution, this means B has a χ2 distribution with 5
degrees of freedom. This last independence assumption is also false, be-
cause each twofold cross-validation is computed from the same training
data. However, experimental tests showed that this is the least problematic
of the various independence assumptions underlying the 5× 2 cv test.

Finally, to use equation 3.1, we must make the assumption that the vari-
ance estimates si are independent of p(1)1 . This must be assumed (rather than
proved as in the usual t distribution derivation), because we are using only
one of the observed differences of proportions rather than the mean of all
of the observed differences. The mean difference tends to overestimate the
true difference, because of the lack of independence between the different
folds of the cross-validation.

With all of these assumptions, we can plug in to equation 3.1to obtain t̃.
Let us summarize the assumptions and approximations involved in this

derivation. First, we employ the normal approximation to the binomial dis-
tribution. Second, we assume pairwise independence of p(1)i and p(2)i for
all i. Third, we assume independence between the si’s. Finally, we assume
independence between the numerator and denominator of the t̃ statistic.

One way to evaluate the 5 × 2 cv statistic experimentally is to make a
quantile-quantile plot (QQ plot), as shown in Figure 2. The QQ plot shows
1000 computed values of the 5 × 2 cv statistic for a case where the null
hypothesis is known to apply (the EXP6 task, as described below). To gen-
erate a QQ plot, the 1000 values are sorted and assigned quantiles (their
rank in the sorted list divided by 1000). Then the inverse cumulative t dis-
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Figure 2: QQ plot comparing the distribution of 1000 values of t̃ to the values
they should have under a t distribution with 5 degrees of freedom. All points
would fall on the line y = x if the distributions matched.

tribution (with 5 degrees of freedom) is used to compute for each quantile
the value that a t-distributed random variable would have taken if it had
had that rank. This value becomes the x-coordinate, and the original value
t̃ becomes the y-coordinate. In other words, for each observed point, based
on its ordinal position within the 1000 points, we can compute what value
it should have had if the 1000 points had been truly drawn from a t distri-
bution. If the 1000 points have a t distribution with 5 degrees of freedom,
then they should lie on the line y = x. The figure shows a fairly good fit
to the line. However, at the tails of the distribution, t̃ is somewhat more
conservative than it should be.

Our choice of five replications of cross-validation is not arbitrary. Ex-
ploratory studies showed that using fewer or more than five replications
increased the risk of type I error. A possible explanation is that there are
two competing problems. With fewer replications, the noise in the mea-
surement of the si’s becomes troublesome. With more replications, the lack
of independence among the si’s becomes troublesome. Whether five is the
best value for the number of replications is an open question.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976698300017197&iName=master.img-001.png&w=286&h=211
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4 Simulation Experiment Design

We now turn to an experimental evaluation of these five methods. The
purpose of the simulation was to measure the probability of type I error
of the algorithms. A type I error occurs when the null hypothesis is true
(there is no difference between the two learning algorithms) and the learning
algorithm rejects the null hypothesis.

To measure the probability of type I error, we constructed some simu-
lated learning problems. To understand these problems, it is useful to think
abstractly about the behavior of learning algorithms.

4.1 Simulating the Behavior of Learning Algorithms. Consider a pop-
ulation of N data points and suppose that the training set size is fixed. Then
for a given learning algorithm A, define εA(x) to be the probability that
the classifier produced by A when trained on a randomly drawn training
set (of the fixed size) will misclassify x. If εA(x) = 0, then x is always cor-
rectly classified by classifiers produced by A. If εA(x) = 1, then x is always
misclassified.

Figure 3 shows the measured values of ε(x) for a population of 7670 points
with respect to the C4.5 decision tree algorithm (Quinlan, 1993) trained on
randomly drawn training sets of 100 examples. The points were sorted by
their ε values. Given these ε values, we could simulate the behavior of
C4.5 on a randomly drawn test set of points by taking each point x and
misclassifying it with probability ε(x). This would not exactly reproduce
the behavior of C4.5, because it assumes that the misclassification errors
made by C4.5 are independent for each test example, whereas in fact, the
classifications of data points that are close together will tend to be highly
correlated. However, this simulated C4.5 procedure would have the same
average error rate as the real C4.5 algorithm, and it will exhibit a similar
degree of variation from one random trial to the next.

We can simulate learning algorithms with various properties by defining
a population of points X and assigning a value ε(x) to each point. If we want
a learning algorithm to have high variance, we can assign values of ε near
0.5, which is the value giving the maximum variance for a binomial random
variable. If we want two learning algorithms to have the same error rate on
the population, we can ensure that the average value of ε over the population
X is the same for both algorithms.

In our studies, we wanted to construct simulated learning problems that
would provide a worst case for our statistical tests. To accomplish this, we
sought to maximize the two main sources of random variation: variation
resulting from the choice of test data sets and variation resulting from the
choice of training sets. We ignored the issue of classification noise. Because it
affects training and test data equally, it can be incorporated into the overall
error rate. We also ignored internal randomness in the learning algorithms,
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Figure 3: Measured values of εC4.5(x) for a population of 7670 data points.

since this will manifest itself in the same way as training set variance: by
causing the same learning algorithm to produce different classifiers.

For tests of type I error, we designed two sets of ε values: εA(x) for
algorithm A and εB(x) for algorithm B. We established a target error rate ε
and chose only two distinct values to use for εA(x) and εB(x): 1

2ε and 3
2ε.

We generated a population of points. For the first half of the population,
we assigned εA(x) = 1

2ε and εB(x) = 3
2ε. For the remaining half of the

population, we reversed this and assigned εA(x) = 3
2ε and εB(x) = 1

2ε.
Figure 4 shows this configuration of ε values. The size of the population is
irrelevant, because we are sampling with replacement, and there are only
two kinds of points. The important property is that the population is evenly
divided between these two kinds of training points.

The effect is that each algorithm has an overall error rate of ε, and each
algorithm has the same total variance. However, for any given test exam-
ple, the algorithms have very different error rates. This makes the effect
of the random choice of test data sets very apparent. Indeed, unless the
test data set is exactly equally divided between the first half of the pop-
ulation and the second half of the population, there will be an apparent
advantage for one algorithm over the other. Our statistical tests will need to

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976698300017197&iName=master.img-002.png&w=286&h=217
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Figure 4: Designed values of εA(x) and εB(x) for an overall error rate of ε = 0.10.

avoid being fooled by this apparent difference in error rates. Experimental
measurements confirmed that these choices of εA(x) and εB(x) did the best
job of simultaneously maximizing within-algorithm variance and between-
algorithm variation while achieving the desired overall error rate of ε. In
most of our experiments, we used a value of ε = 0.10, although we also
investigated ε = 0.20, ε = 0.30, and ε = 0.40.

4.2 Details of the Simulation of Each Statistical Test. Each simulation
is divided into a series of 1000 trials. In each trial, a data set S of size 300
is randomly drawn with replacement and then analyzed using each of the
five statistical tests described above. The goal is to measure the proportion
of trials in which the null hypothesis is rejected.

For the first two tests, McNemar’s test and the normal test for the differ-
ence of two proportions, the data set S is randomly divided into a training
set R containing two-thirds of S and a test set T containing the remaining
one-third of S. The training set is ignored, because we do not actually ex-
ecute the learning algorithms. Rather, the performance of each algorithm
on the test set is simulated by classifying each test example x randomly
according to its value of εA(x) and εB(x). A random number in the range
[0,1) is drawn. If it is less than εA(x), then x is considered to be misclassified

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976698300017197&iName=master.img-003.png&w=286&h=217
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by algorithm A. A second random number is drawn, and x is considered
misclassified by algorithm B if that number is less than εB(x). The results
of these classifications are then processed by the appropriate statistical test.
All tests were performed using two-sided tests with confidence level 0.05.

For the resampled paired t test, this process of randomly splitting the
data set S two-thirds/one-thirds was repeated 30 times. Each test set was
classified as described in the previous paragraph. The 30 differences in the
error rates of the two algorithms were collected and employed in the t test.

For the k-fold cross-validated paired t test, the data set S was divided
into k = 10 random subsets of equal size. Each of the 10 test sets was
then classified by both algorithms using the random procedure described.
However, during the classification process, to simulate random variation
in the quality of each training set, we generated a random value β in the
range [−0.02,+0.02] and added this value β to every εA(x) and εB(x) before
generating the classifications. The results of the classifications were then
collected and subjected to the t test.

For the 5 × 2 cv test, five replications of twofold cross-validation were
performed, and the t statistic was constructed as described above.

It is important to note that this experiment does not simulate training set
variance. In particular, it does not model the effect of overlapping training
sets on the behavior of the cross-validated t test or the 5 × 2 cv test. We
will correct this shortcoming below in our experiments with real learning
algorithms.

5 Results

Figure 5 shows the probability of making a type I error for each of the five
procedures when the data set S contains 300 examples and the overall error
rate ε was varied from 0.10 to 0.40.

Two of the five tests have a probability of type I error that exceeds the
target value of 0.05: the difference-of-proportions test and the resampled
t test. The remaining tests have acceptable probability of making a type I
error according to this simulation.

The resampled t test has a much higher probability of type I error than the
other tests. This results from the fact that the randomly drawn data set S is
likely to contain an imbalance of points from the first half of the population
compared to the second half of the population. The resampled t test can de-
tect and magnify this difference until it is “statistically significant.” Indeed,
the probability of making a type I error with this test can be increased by
increasing the number of resampled training-test splits. Figure 6 shows the
effect of various numbers of resampled splits for both the resampled t test
and the cross-validated t test. Notice that the cross-validated t test does not
exhibit this problem.

The difference-of-proportions test suffers from essentially the same prob-
lem. When the sample S is unrepresentative, the measured difference in the
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Figure 5: Probability of type I error for each statistical test. The four adjacent
bars for each test represent the probability of type I error for ε = 0.10, 0.20, 0.30,
and 0.40. Error bars show 95% confidence intervals for these probabilities. The
horizontal dotted line shows the target probability of 0.05.

two proportions will be large, especially when ε is near 0.5. It is interesting
that McNemar’s test does not share this problem. The key difference is that
the difference-of-proportions test looks only at the difference between two
proportions and not at their absolute values. Consider the following two
2× 2 contingency tables:

0 40
60 0

40 0
20 40

Both tables have the same difference in error rates of 0.20, so the difference-
of-proportions test treats them identically (and rejects the null hypothesis,
p < 0.005). However, McNemar’s test finds no significant difference in
the left table, but finds an extremely significant difference (p < 0.001) in
the right table. This is because in the left table, McNemar’s test asks the
question, “What is the probability in 100 tosses of a fair coin that we will
receive 40 heads and 60 tails?” In the right table, it asks the question, “What

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976698300017197&iName=master.img-004.png&w=286&h=235
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Figure 6: Probability of Type I error for the resampled t test and the k-fold cross-
validated t test as the number of resampling replications is varied. The error rate
ε = 0.10.

is the probability in 20 tosses of a fair coin that we will receive 20 heads and
0 tails?” The way we have constructed our simulated learning problems, we
are more likely to produce tables like the one on the left, especially when ε
is near 0.5. Note that if we had used the corrected version of the difference-
of-proportions test, it would not have suffered from this problem.

Because of the poor behavior (and high cost) of the resampled t test, we
excluded it from further experiments.

The biggest drawback of the simulation is that it does not capture or mea-
sure training set variance or variance resulting from the internal behavior of
the learning algorithm. To address these problems, we conducted a second
set of experiments with real learning algorithms and real data sets.

6 Experiments on Realistic Data

6.1 Methods. To evaluate the type I error rates of our four statistical
tests with real learning algorithms, we needed to find two learning algo-
rithms that had identical performance when trained on training sets of a
given size. We also needed the learning algorithms to be very efficient, so

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976698300017197&iName=master.img-005.png&w=286&h=218
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that the experiments could be replicated many times. To achieve this, we
chose C4.5 Release 1 (Quinlan, 1993) and the first nearest-neighbor (NN)
algorithm (Dasarathy, 1991). We then selected three difficult problems: the
EXP6 problem developed by Kong and Dietterich (1995), the letter recogni-
tion data set (Frey & Slate, 1991), and the Pima Indians diabetes task (Merz &
Murphy, 1996). Of course, C4.5 and NN do not have the same performance
on these data sets. In EXP6 and letter recognition, NN performs much better
than C4.5; the reverse is true in the Pima data set.

Our next step was to “damage” the learning algorithms so that their
performance was identical. In the EXP6 and letter recognition tasks, we
modified the distance metric employed by NN to be a weighted Euclidean
distance with bad weights. This allowed us to reduce the performance of
NN until it matched C4.5 on those data sets. To equalize the performance
of the algorithms on the Pima data set, we modified C4.5 so that when
classifying new instances, it would make random classification errors at a
specified rate.

More precisely, each data set was processed as follows. For EXP6, we
generated a calibration set of 22,801 examples (spaced on a uniform grid of
resolution 0.1). We then generated 1000 data sets, each of size 300, to simulate
1000 separate trials. From each of these 1000 data sets, we randomly drew
subsets of size 270, 200, and 150. These sizes were chosen because they are the
sizes of training sets used in the 10-fold cross-validated t test, the McNemar
and difference-of-proportions tests, and the 5 × 2 cv t test, respectively,
when those tests are given an initial data set of 300 examples. For each size
of training set (270, 200, and 150), we adjusted the distance metric for NN
so that the average performance (over all 1000 data sets, measured on the
22,801 calibration examples) matched the average performance of C4.5 to
within 0.1%.

For letter recognition, we randomly subdivided the 20,000 examples into
a calibration set of 10,000 and an experimental set of 10,000. We then drew
1000 data sets, each of size 300, randomly from the experimental set of
10,000 examples. Again, from each of these data sets, we drew random
subsets of size 270, 200, and 150. For each size of training set, we adjusted
the distance metric for NN so that the average performance (over all 1000
data sets, measured on the 10,000 calibration examples) matched the average
performance of C4.5 to within 0.1%.

For the Pima Indians diabetes data set, we drew 1000 data sets of size 300
from the 768 available examples. For each of these data sets, the remaining
468 examples were retained for calibration. Each of the 1000 data sets of size
300 was further subsampled to produce random subsets of size 270, 200, and
150. For each size of training set, we measured the average error rate of C4.5
and NN (over 1000 data sets, when tested on the 468 calibration examples
corresponding to each data set). We then adjusted the random noise rate of
C4.5 so that the average error rates would be identical.
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Figure 7: Type I error rates for four statistical tests. The three bars within each
test correspond to the EXP6, letter recognition, and Pima data sets. Error bars
are 95% confidence intervals on the true type I error rate.

6.2 Type I Error Results. Figure 7 shows the measured type I error rates
of the four statistical tests. The 10-fold cross-validated t test is the only test
whose type I error exceeds 0.05. All of the other tests, even the difference-
of-proportions test (“Prop Test”), show acceptable type I error rates.

6.3 Power Measurements. Type I error is not the only important con-
sideration in choosing a statistical test. It is the most important criterion
if one’s goal is to be confident that an observed performance difference is
real. But if one’s goal is to detect whether there is a difference between two
learning algorithms, then the power of the statistical test is important. The
power of a test is the probability that it will reject the null hypothesis when
the null hypothesis is false.

To measure the power of the tests, we recalibrated the distance metric
for nearest neighbor (for the EXP6 and letter recognition tasks) and the
random classification error rate (for Pima) to achieve various differences in
the performance of C4.5 and NN. Specifically, we did the following. First, we
measured the performance for C4.5 and NN when trained on 300 examples
and tested on the appropriate calibration examples as before (denote these
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Figure 8: Learning curves interpolated between C4.5 and NN for the purpose
of measuring power.

error rates εC4 and εNN). Then we chose various target error rates between
these extremes. For each target error rate εtarget, we computed the fraction λ
such that εtarget = εC4.5 − λ(εC4.5 − εNN). We then calibrated the error rates
of C4.5 and NN for training sets of size 150, 200, and 270 so that the same
value of λ applied. In other words, we adjusted the learning curve for the
nearest-neighbor algorithm (with damaged distance metric) so that it was
positioned at a fixed fraction of the way between the learning curves for
C4.5 and for NN (with an undamaged distance metric). Figure 8 shows the
calibrated learning curves for the letter recognition task for various values
of λ.

Figures 9, 10, and 11 plot power curves for the four statistical tests. These
curves show that the cross-validated t test is much more powerful than
the other three tests. Hence, if the goal is to be confident that there is no
difference between two algorithms, then the cross-validated t test is the test
of choice, even though its type I error is unacceptable.

Of the tests with acceptable type I error, the 5 × 2 cv t test is the most
powerful. However, it is sobering to note that even when the performance
of the learning algorithms differs by 10 percentage points (as in the letter
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Figure 9: Power of four statistical tests on the EXP6 task. The horizontal axis
plots the number of percentage points by which the two algorithms (C4.5 and
NN) differ when trained on training sets of size 300.

recognition task), these statistical tests are able to detect this only about
one-third of the time.

7 Discussion

The experiments suggest that the 5× 2 cv test is the most powerful among
those statistical tests that have acceptable type I error. This test is also the
most satisfying, because it assesses the effect of both the choice of training
set (by running the learning algorithms on several different training sets)
and the choice of test set (by measuring the performance on several test
sets).

Despite the fact that McNemar’s test does not assess the effect of varying
the training sets, it still performs very well. Indeed, in all of our various
experiments, we never once saw the type I error rate of McNemar’s test
exceed the target level (0.05). In contrast, we did observe cases where both
the 5× 2 cv and differences-of-proportions tests were fooled.
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Figure 10: Power of four statistical tests on the letter recognition task. The hori-
zontal axis plots the number of percentage points by which the two algorithms
(C4.5 and NN) differ when trained on training sets of size 300.

The 5 × 2 cv test will fail in cases where the error rates measured in
the various twofold cross-validation replications vary wildly (even when
the difference in error rates is unchanged). We were able to observe this in
some simulated data experiments where the error rates fluctuated between
0.1 and 0.9. We did not observe it during any of our experiments on realistic
data. Wild variations cause bad estimates of the variance. It is therefore
advisable to check the measured error rates when applying this test.

The difference-of-proportions test will fail in cases where the two learn-
ing algorithms have very different regions of poor performance and where
the error rates are close to 0.5. We did not encounter this problem in our
experiments on realistic data, although C4.5 and NN are very different algo-
rithms. We suspect that this is because most errors committed by learning al-
gorithms are near the decision boundaries. Hence, most learning algorithms
with comparable error rates have very similar regions of poor performance,
so the pathology that we observed in our simulated data experiments does
not arise in practice. Nonetheless, given the superior performance of Mc-
Nemar’s test and the incorrect assumptions underlying our version of the
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Figure 11: Power of four statistical tests on the Pima task. The horizontal axis
plots the number of percentage points by which the two algorithms (C4.5 and
NN) differ when trained on training sets of size 300.

difference-of-proportions test, there can be no justification for ever employ-
ing the uncorrected difference-of-proportions test.

The 10-fold cross-validated t test has high type I error. However, it also
has high power, and hence, it can be recommended in those cases where
type II error (the failure to detect a real difference between algorithms) is
more important.

8 Conclusions

The starting point for this article was Question 8: Given two learning algo-
rithms A and B and a small data set S, which algorithm will produce more
accurate classifiers when trained on data sets of the same size as S drawn
from the same population? Unfortunately, none of the statistical tests we
have described and evaluated can answer this question. All of the statistical
tests require using holdout or resampling methods, with the consequence
that they can tell us only about the relative performance of the learning
algorithms on training sets of size |R| < |S|, where |R| is the size of the
training set employed in the statistical test.
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In addition to this fundamental problem, each of the statistical tests has
other shortcomings. The derivation of the 5 × 2 cv test requires a large
number of independence assumptions that are known to be violated. Mc-
Nemar’s test and the difference-of-proportions test do not measure the vari-
ation resulting from the choice of training sets or internal randomness in
the algorithm and therefore do not measure all of the important sources
of variation. The cross-validated t test violates the assumptions underlying
the t test, because the training sets overlap.

As a consequence of these problems, all of the statistical tests described
here must be viewed as approximate, heuristic tests rather than as rigor-
ously correct statistical methods. This article has therefore relied on exper-
imental evaluations of these methods, and the following conclusions must
be regarded as tentative, because the experiments are based on only two
learning algorithms and three data sets.

Our experiments lead us to recommend either the 5 × 2cv t test, for
situations in which the learning algorithms are efficient enough to run ten
times, or McNemar’s test, for situations where the learning algorithms can
be run only once. Both tests have similar power.

Our experiments have also revealed the shortcomings of the other statis-
tical tests, so we can confidently conclude that the resampled t test should
never be employed. This test has very high probability of type I error, and
results obtained using this test cannot be trusted. The experiments also sug-
gest caution in interpreting the results of the 10-fold cross-validated t test.
This test has an elevated probability of type I error (as much as twice the
target level), although it is not nearly as severe as the problem with the
resampled t test.

We hope that the results in this article will be useful to scientists in the
machine learning and neural network communities as they develop, under-
stand, and improve machine learning algorithms.
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