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Abstract- Bioinformatics and related applications call for 
efficient algorithms for knowledgeintensive learning and 
data-driven knowledge refinement. Knowledge based arti- 

tending or modifying incomplete knowledge bases or do- 
main theories. we present results of experiments with sev- 
eral such algorithms for data-driven knowledge discovery 
and theory refinement in some simple bioinformatics appli- 
cations. Results of experiments on the ribosome binding site 
and promoter site identification problems indicate that the 
performance of KBDistAl and Tiling-Pyramid algorithms com- 
pares quite favorably with those of substantially more com- 
putationally demanding techniques. 

either augmenting it with new knowledge or by refining the 
&sting knowledge are called theory refinement systems. 

the following categories. 
ficial neural offer an attractive approach to ex- Theory refinement systems be 

, A ~ ~ ~ ~ ~ & ~ ~  based on Rule Induction which use 
decision tree or rule learning algorithms for theory r e  
vision. Examples of such systems include RTLS [6], 
EITHER [7], PTR [8], and TGCl [9]. 
A ~ ~ ~ ~ ~ & ~ ~  based on Inductive ~~~i~ program- 
ming which represent knowledge using first-order 
logic (or restricted subsets of it). Examples of such 
systems include FOCL [lo] and FORTE [ll]. 
Connectionist Approaches using Artificial Neu- 
ral Networks which typically operate by first embed- 
ding domain knowledge into an appropriate initial neu- 
ral network topology and refine it by training the re- 
suiting neural network on the set of labeled examples. 
The KBANN system 1121, [131 as well as related ap- 
proaches [14] and [15] offer examples of this approach. 

involving datasets from the H~~ 
Genome Projectl, KBA" has b e n  reported to have out- 
performed symbolic theory refinement systems (such as El- 
THER) and other learning algorithms such as backpropa- 
gation and 1 ~ 3  [131. KBA" is limited by the fact that 
it does not modify the networkis topology and theory re- 
finement i~ conducted solely by updating the connection 
weights. This prevents the incorporation of new rules and 
also restricts the algorithm's ability to compensate for in- 
accuracies in the domain theory. Against this background, 
constructive neural network learning algorithms, because 
of their ability to modify the network ar&itecture by dy- 
namically adding neurom in a controlled fashion [le], [17], 
[18], offer an attractive approach to data-driven theory r e  

I. INTRODUCTION 
Inductive learning systems attempt to learn a concept 

description from a sequence of labeled-examples [l], [2]. 
Artificial neural networks, because of their massive paral- 
lelism and Potential for fault and noise tolerance, offer an 
attractive approach to inductive learning [l], [3], [4]. Such 
systems have been successfully used for data-driven knowl- 
edge acquisition in several application domains. However, 
these systems generalize from the labeled examples alone. 
The availability of domain specific knowledge (domain the- 
ories) about the concept being learned Can Potentially en- 
hance the performance of the inductive learning system [5]. 
Hybrid learning systems that effectively combine domain 
knowledge with the inductive learning m.~ potentially learn 
faster and generalize better than those based on Purely in- 
ductive learning (learning from labeled examples alone). 
In practice the domain theory is often incomplete or even 
inaccurate. 

Inductive learning systems that use information from 
training examples to modify an existing domain theory by 
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finement . Available domain knowledge is incorporated into 
an initial network topology (e.g., using the rules-to-network 
algorithm of [12] or by other means). Inaccuracies in the 
domain theory are compensated for by extending the net- 
work topology using training examples. Figure 1 depicts 
this process. 

Constructive Neural Network 

Fig. 1. Theory Refinement using a Constructive Neural Network 

11. CONSTRUCTIVE THEORY REFINEMENT USING 
KNOWLEDGE-BASED NEURAL NETWORKS 

This section briefly describes the constructive theory re- 
finement systems which are experimentally compared in 
this paper on some sample data-driven knowledge refine- 
ment tasks in bioinformatics. 

Fletcher and ObradoviC [19] designed a constructive 
learning method for dynamically adding neurons to the 
initial knowledge based network. Their approach starts 
with an initial network representing the domain theory and 
modifies this theory by constructing a single hidden layer 
of threshold logic units (TLUs) from the labeled training 
data using the HDE algorithm [20]. The HDE algorithm 
divides the feature space with hyperplanes. Fletcher and 
ObradoviC’s algorithm maps these hyperplanes to a set of 
TLUs and then trains the output neuron using the pocket 
algorithm [21]. 

The RAPTURE system is designed to refine domain the- 
ories that contains probabilistic rules represented in the 
certainty-factor format 1221. RAPTURE’S approach to mod- 
ifying the network topology differs from that used in KB- 
DistAl as follows: RAPTURE uses an iterative algorithm to 
train the weights and employs the information gain heuris- 
tic [23] to add links to the network. KBDistAl is simpler 
than RAPTURE in that it uses a non-iterative constructive 
learning algorithm to augment the initial domain theory. 

Opitz and Shavlik have extensively studied connectionist 
theory refinement systems that overcome the fixed topology 
limitation of the KBANN algorithm [24], [25]. The TopGen 
algorithm [24] uses a heuristic search through the space 
of possible expansions of a KBANN network constructed 
from the initial domain theory. TopGen maintains a queue 
of candidate networks ordered by their test accuracy on a 
crossvalidation set. At each step, TopGen picks the best 
network and explores possible ways of expanding it. New 

networks are generated by strategically adding nodes at 
different locations within the best network selected. These 
networks are trained and inserted into the queue and the 
process is repeated. 

The REGENT algorithm uses a genetic search to explore 
the space of network architectures [25]. It first creates a 
diverse initial population of networks from the KBANN net- 
work constructed from the domain theory. Genetic search 
uses the classification accuracy on a cross-validation set as 
a fitness measure. REGENT’S mutation operator adds a 
node to the network using the TopGen algorithm. It also 
uses a specially designed crossover operator that maintains 
the network’s rule structure. The population of networks is 
subjected to fitness proportionate selection, mutation, and 
crossover for many generations and the best network pro- 
duced during the entire run is reported as the solution. The 
KBDistAl algorithm [26], constructs a single hidden layer. 
It uses a computationally efficient DistAl algorithm which 
constructs the entire network in one pass through the train- 
ing set instead of relying on the iterative approach used by 
Fletcher and ObradovC which requires a large number of 
passes through the training set. The key idea behind Dis- 
tAl [17], [18], [27] is to add hyperspherical hidden neurons 
one at a time based on a greedy strategy which ensures 
that each hidden neuron that is added correctly classifies a 
maximal subset of training patterns belonging to a single 
class. Correctly classified examples can then be eliminated 
from further consideration. The process is repeated un- 
til the network correctly classifies the entire training set 
(or some other suitable termination criterion e.g., based 
on cross-validation is met). It is straightforward to show 
that DistAl which sets the hidden to output layer weights 
without going through an iterative process is guaranteed to 
converge to 100% classification accuracy on any finite train- 
ing set in time that is quadratic in the number of training 
patterns [MI. Experiments reported in [18] show that Dis- 
tAl, despite its simplicity, yields classifiers that compare 
quite favorably with those generated using more sophisti- 
cated (and substantially more computationally demanding) 
learning algorithms. KBDistAl uses a very simple approach 
to incorporating prior knowledge into DistAl. The input 
patterns are classified using the rules and the resulting out- 
puts are used to augment the pattern before it is fed to the 
neural network which is constructed using DistAl. That is, 
DistAl is used as the constructive algorithm in Figure 1. 
This eliminates the need for translating the rules into a 
neural network. 

The Tiling-Pyramid algorithm [28] uses a novel combina- 
tion of the Tiling and Pyramid constructive learning algo- 
rithms [l6], [21]. It employs a symbolic knowledge encoding 
procedure to translate a domain theory into a set of propo- 
sitional rules using a procedure that is based on the d e s -  
to-networks algorithm of Towel1 and Shavlik [12] which is 
used in KBANN, TopGen, and REGENT. It yields a set of 
rules each of which has only one antecedent. The rule set 
is then mapped to an AND-OR graph which in turn is di- 
rectly translated into a neural network. The Tiling-Pyramid 
algorithm uses the Tiling algorithm to construct a faithfur 
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representation of the pattern set. A faithful representation 
of the pattern set is one in which no two patterns belonging 
to different output classes has the same output represen- 
tation. The Pyramid algorithm is used to successively add 
new layers of TLUs to the network. Each newly added 
layer becomes the network’s new output layer. The neu- 
rons of the new layer are connected to the input layer and 
all previously added layers of the network. Experiments 
have shown that the hybrid algorithm outperforms both 
Pyramid and Tiling algorithms [16]. 

In the experiments reported in this paper, the Tiling- 
Pyramid constructive learning algorithm was used to aug- 
ment the initial domain knowledge. The hybrid net- 
work was trained using the Thermal Perceptron learning 
rule [29]. Each TLU was trained for 1000 epochs with the 
initial weights chosen randomly between -1 and 1 and the 
initial temperature for the thermal perceptron (TO) set to 
10.0. 

111. EXPERIMENTAL RESULTS 
This section reports results of experiments using KBDis- 

tAl and Tiling-Pyramid on data-driven theory refinement 
on the ribosome binding site and promoter site prediction 
used by Shavlik’s group [5], [12], [13], [24], [25]: 

Ribosome 
This data is from the Human Genome Project. It com- 
prises of a domain theory and a set of labeled exam- 
ples. The input is a short segment of DNA nucleotides, 
and the goal is to learn to predict whether the DNA 
segments contain a ribosome binding site. There are 
17 rules in the domain theory, and 1880 examples in 
the dataset. 

e Promoters 
This data is also from the Human Genome Project, 
and consists of a domain theory and a set of labeled 
examples. The input is a short segment of DNA nu- 
cleotides, and the goal is to learn to predict whether 
the DNA segments contain a promoter site. There are 
31 rules in the domain theory, and 940 examples in the 
dataset. 

The reported results are based on a 10-fold cross- 
validation. The average training and test accuracies of 
the rules in domain theory alone were 87.29 f 0.22 and 
87.29 f 2.03 for Ribosome dataset and 77.45 f 0.56 and 
77.45 f 5.01 for Promoters dataset, respectively. Table I 
and I1 shows the average generalization accuracy and the 
average network size (along with the standard deviations 
where available) for Ribosome and Promoters datasets, 
respectively. 

Table I and I1 compare the performance of KBDistAl and 
Tiling-Pyramid with that of some of the other approaches 
that have been reported in the literature. Tiling-Pyramid 
substantially outperforms TopGen, REGENT and KBDis- 
tAl in terms of generalization accuracy on the Promoters 
dataset. Tiling-Pyramid’s generalization accuracy is com- 
parable to that of TopGen and REGENT and substantially 
better than that of KBDistAl on the Ribosome dataset. We 
conjecture that KBDistAl might have suffered from overfit- 
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TABLE I 
RESULTS OF Ribosome DATASEX. 

I Test % I Size 
Rules alone 87.3 f 2.0 

86.3 f 2.4 
91.8 f 1.8 

Tiling-Pyramid 90.3 f 1.8 -- REGENT TopGen 

KBDistAl (no pruning) 
KBDistAl (with pruning) 

- 
40.3 f 1.3 
16.2 f 3.7 
23 f 0.0 
42.1 f 9.3 
70.1 f 25.1 

TABLE I1 
RESULTS OF Promoters DATASET. 

I Test % I Size 
Rules alone 

KBDistAl (no pruning) 
KBDistAl (with pruning) 

Tiling-Pyramid 
TopGen 

REGENT 

77.5 f 5.0 
93.0 f 2.8 
95.5 f 3.3 
96.3 & 1.8 

94.8 
95.8 

- 
12.2 ic 1.0 
3.9 f 2.3 
34 f 0.0 
40.2 f 3.3 
74.9 f 38.9 

ting of training data in the case of the Ribosome data. In 
fact, when the network pruning procedure was applied in 
KBDistAl to avoid overfitting, the generalization accuracy 
became comparable to that of Tiling-Pyramid. 

The time taken by both KBDistAl and Tiling-Pyramid is 
significantly less than that of the other approaches. KBDis- 
tAl and Tiling-Pyramid take a fraction of a minute to a few 
minutes of CPU time on each dataset used in the experi- 
ments. In contrast, TopGen and REGENT were reported to 
have taken several days to obtain the results reported in 
[25]. It is also worth noting that the networks generated by 
KBDistAl and Tiling-Pyramid are substantially more com- 
pact than those generated by TopGen and REGENT. 

Iv. SUMMARY AND DISCUSSION 
Theory refinement techniques offer an attractive a p  

proach to exploiting available domain knowledge to en- 
hance the performance of data-driven knowledge acquisi- 
tion systems. Neural networks have been used extensively 
in theory refinement systems that have been proposed in 
the literature. Most of such systems translate the domain 
theory into an initial neural network architecture and then 
train the network to refine the theory. The KBANN algo- 
rithm is demonstrated to outperform several other learning 
algorithms on some domains [12], [13]. However, a signifi- 
cant disadvantage of KBANN is its k e d  network topology. 
TopGen and REGENT algorithms were proposed to elimi- 
nate this limitation and attempt to modify the network ar- 
chitecture. Experimental results demonstrate that TopGen 
and REGENT outperform KBANN on several applications. 

Experimental results presented in this paper demon- 
strate that approaches to data-driven theory refinement 
using constructive neural network training algorithms such 
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as KBDistAl and Tiling-Pyramid are competitive in terms 
of of generalization accuracy with several of the more com- 
put ationally expensive algorithms. Additional experiments 
are needed to conclusively determine the extent to which 
the incorporation of prior knowledge improves classification 
accuracy, and/or reduces learning time in real-world knowl- 
edge discovery applications. Examination of the changes to 
domain knowledge that are induced by training data is also 
of significant interest. 

It can be argued that KBDistAl and Tiling-Pyramid are 
not theory refinement algorithms in a strict sense. They 
make use of the domain knowledge in inductive learning 
as opposed to truly refining the knowledge. Perhaps KB- 
DistAl, Tiling-Pyramid, and related approaches should be 
more accurately described as a knowledge guided inductive 
theory construction systems. 

There are several extensions and variants of KBDistAl 
that are worth exploring. Given the fact that DistAl relies 
on inter-pattern distances to induce classifiers from data, 
it is straightforward to extend it so as to handle a much 
broader class of problems including those that involve pat- 
terns of variable sizes (e.g., strings) or symbolic structures 
as long as suitable inter-pattern distance metrics can be 
defined. Some steps toward rigorous definitions of distance 
metrics based on information theory are outlined in [30]. 
Variants of DistAl and KBDistAl that utilize such distance 
metrics are currently under investigation. 

Several authors have investigated approaches to rule ex- 
traction from neural networks in general, and connectionist 
theory refinement systems in particular [31], [32], [33]. One 
goal of such work is to represent the learned knowledge in 
a form that is comprehensible to humans. In this context, 
rule extraction from classifiers induced by KBDistAl and 
Tiling-Pyramid is of some interest. 

Extensive experiments, on a wide range of knowledge dis- 
covery tasks in bioinformatics (e.g., protein structure pre- 
diction, identification of molecular structure-function rela- 
tionships) using a broad range of data-driven knowledge re- 
finement techniques (including constructive neural network 
approaches such as KBDistAl and Tiling-Pyramid, decision 
tree and rule induction techniques, Bayesian networks and 
related approaches) are needed in order to characterize the 
relative strengths and limitations of different techniques. 

In several practical applications of interest, all of the 
data needed for synthesizing reasonably precise classifiers 
is not available at once. This calls for incremental algo- 
rithms that continually refine knowledge as more and more 
data becomes available. Computational efficiency consid- 
erations argue for the use of data-driven theory refinement 
systems as opposed to storing large volumes of data and 
rebuilding the entire classifier from scratch as new data be- 
comes available. Some preliminary steps in this direction 
are described in [34]. 

A related problem involves knowledge discovery from 
large, physically distributed, dynamic data sources in a 
networked environment (e.g., data in genome databases). 
Given the large volumes of data involved, this argues for 
the use of data-driven theory refinement algorithms embed- 

ded in mobile software agents [34], [35] that travel from one 
data source to another, carrying with them, only the cur- 
rent knowledge base as opposed to approaches rely on ship- 
ping large volumes of data to a centralized repository where 
knowledge acquisition is performed. Thus, data-driven 
knowledge refinement algorithms constitute one of the key 
components of distributed knowledge network [34] environ- 
ments for knowledge discovery in bioinformatics and re- 
lated applications. 

In several application domains, knowledge acquired on 
one task can often be utilized to accelerate knowledge ac- 
quisition on related tasks. Data-driven theory refinement 
is particularly attractive in applications that lend them- 
selves to such cumulative multi-task learning [36]. The use 
of KBDistAl, Tiling-Pyramid, or similar algorithms in such 
scenarios remains to be explored. 
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