Collective Program Analysis

Ganesha Upadhyaya
Dept. of Computer Science
Iowa State University
Ames, Iowa, USA
ganeshau@iastate.edu

Hridesh Rajan
Dept. of Computer Science
Iowa State University
Ames, Iowa, USA
hridesh@iastate.edu

ABSTRACT

Popularity of data-driven software engineering has led to an increasing demand on the infrastructures to support efficient execution of tasks that require deeper source code analysis. While task optimization and parallelization are the adopted solutions, other research directions are less explored. We present collective program analysis (CPA), a technique for scaling large scale source code analyses, especially those that make use of control and data flow analysis, by leveraging analysis specific similarity. Analysis specific similarity is about, whether two or more programs can be considered similar for a given analysis. The key idea of collective program analysis is to cluster programs based on analysis specific similarity, such that running the analysis on one candidate in each cluster is sufficient to produce the result for others. For determining analysis specific similarity and clustering analysis-equivalent programs, we use a sparse representation and a canonical labeling scheme. Our evaluation shows that for a variety of source code analyses on a large dataset of programs, substantial reduction in the analysis time can be achieved; on average a 69% reduction when compared to a baseline and on average a 36% reduction when compared to a prior technique. We also found that a large amount of analysis-equivalent programs exists in large datasets.

CCS CONCEPTS

• Software and its engineering → Formal software verification;
Software maintenance tools;

KEYWORDS

Source code analysis, Clustering, Boa

1 INTRODUCTION

Data-driven software engineering technique has gained popularity in solving variety of software engineering (SE) problems, such as defect prediction [9], bug fix suggestions [20, 21], programming pattern discovery [34, 40], and specification inference [1, 23, 26, 44]. The solutions to these SE problems generally require expensive source code analyses, such as data-flow analysis. Parallelization and task optimizations are the two widely adopted techniques to scale source code analyses to large code bases [5, 11, 18].

We propose collective program analysis (CPA), a complementary technique that leverages analysis specific similarity to scale source code analysis to large code bases. The key idea of CPA is to cluster programs based on analysis specific similarity, such that running the analysis on one candidate in each cluster is sufficient to produce the result for others. For instance, if a user wants to run an analysis to check for null dereference bugs in millions of programs, CPA would run the analysis on only the unique programs and reuse the results on others.

The three core concepts in CPA are the concept of analysis specific similarity, the technique of abstractly representing programs to reveal analysis specific similarity, and the technique of storing and reusing the analysis results between similar programs. Analysis specific similarity (or analysis equivalence) is about, whether two or more programs can be considered similar for a given analysis. Programs can be considered similar if they execute the same set of instructions in the analysis. For instance, if an analysis is about counting the number of assert statements, irrespective of how different the two programs are, if they have the same number of assert statements, they can be considered similar for the purpose of the assert counting analysis.

Code clones are the popular way of representing similar code [28]. Syntactic clones represent code fragments that are look alike (at token-level or AST-level), semantic clones represent code fragments that have similar control and data flow, functional clones represent code fragments that have similar input and output behaviors, and behavioral clones are the code fragments that perform similar computation. We did not use syntactic clones, because the benefits will be limited to copy-and-paste code. Semantic clones could not be used, because of lack of guarantee that analysis output will be similar. Moreover, semantically different code fragments may produce similar output for a given analysis and we would miss out on those. For the same reason, we also could not use the functional and behavioral clones. For these reasons, we go beyond the existing notion of similarity and define analysis specific similarity. We show that for analysis expressed in the lattice-based data-flow framework, we can use the transfer functions to identify analysis specific similarity.

Programs may have statements that are irrelevant for the given analysis. These are the statements that do not contributes to the analysis output. For identifying the analysis specific similarity it is necessary to remove the irrelevant statements and abstractly
represent the reduced program. We use a sparse representation to remove the irrelevant statements without sacrificing the precision of the result [38]. Comparing sparse representations to determine analysis equivalence becomes a graph isomorphism problem for data-flow analysis that have sparse control flow graphs. We use a canonical labeling scheme to make this comparison efficient [43]. Using the labeling scheme we can produce unique patterns to facilitate the comparison. For reusing the results between the analysis equivalent programs, we store the results in an efficient key-value store based pattern database [25].

We evaluate our approach by measuring the reduction in the analysis time for 10 source code analysis tasks that involve data-flow analysis. We use two large datasets of programs: a DaCapo dataset containing DaCapo 9.12 benchmarks [6] and 287 thousand methods, a SourceForge dataset containing 4,938 open-source SourceForge projects and 6.8 million methods. When compared to a baseline that runs the analysis on every program in the dataset, CPA reduces the analysis time by 69% on average and when compared to another technique that removes irrelevant program statements prior to running the analysis, CPA reduces the analysis time by 36% on average. We also see a large amount of reuse opportunities in our datasets for almost all analyses.

2 MOTIVATING EXAMPLE

Consider a Resource Leak analysis that identifies possible resource leaks in the programs by tracking the resources that are acquired and released throughout the program by performing a flow analysis [37]. The analysis reports a problem when any acquired resource is not released on every path in the program. If a user wants to run this analysis on a large code base that contains millions of methods, he would end up running the analysis on every method in the code base. An optimization can be performed to skip analyzing methods that do not contain resource related statements, however the methods that have resource related statements must be analyzed.

To illustrate, consider the three methods writeObj, main, and loadPropertyFile extracted from our SourceForge dataset shown in Figure 1. These three methods differ by syntax, semantics, functionality, and behaviorally, however for the resource leak analysis they all behave similar, because all of them acquire a resource and release along one of the execution paths, leading to a resource leak (In event of exception, the resource is not released). Although the three methods were similar for the resource leak analysis, all of them were analyzed to report leak. If there existed a technique that could capture this similarity, it could perform the analysis on any one of these three methods and simply return true for the other two methods, indicating a resource leak.

When analyzing a small number of methods or a handful of projects, there may not exist a lot of analysis specific similarity between the source code elements, such as methods, however in case of large code bases, a large amount of analysis equivalent methods exists. For instance, the resource usage pattern leading to a leak shown in Figure 1 exists in 5151 methods in our SourceForge dataset. This means that, we only need to run the resource leak analysis on one method out of 5151 and reuse the result (in this case whether a leak exists or not) for the remaining 5150 methods. The SourceForge dataset contains a total of 82,900 methods that have resource related code out of 6,741,465 methods in the dataset. We were able to see 5689 unique patterns and the leak pattern discussed here appears in the top 3 patterns. Likewise, when analyzing large code bases, there exists a large amount of analysis equivalent codes and a large percentage of reuse opportunity to utilize for accelerating the overall analysis of large code bases.

3 CPA: COLLECTIVE PROGRAM ANALYSIS

Figure 2 provides a high-level overview of collective program analysis (CPA). Given a source code analysis that needs to be run on a large dataset of programs, we first run a light-weight pre-analysis on each program that identifies and removes irrelevant parts of the program, and labels the remaining statements (the analysis relevant statements). This labeled compact program is called a sparse representation. We then generate a pattern for the sparse representation and check the pattern against a pattern database. If the pattern is not found, the analysis is run on the sparse representation to produce the result, whereas if the pattern already exists, then the stored result is extracted and returned as the analysis output.

While our solution looks intuitive, there exists several challenges in realizing CPA. For example, how to generate a sparse representation given an analysis and a program, how to generate a pattern for
sparse representation such that analysis equivalent sparse representations can be identified, and how to utilize the sparse representation to reuse the analysis results. We will describe these challenges and our solutions in detail. But, first we describe the analysis model under assumption.

3.1 The Analysis Model

A source code analysis can be performed either on the source code text or on the intermediate representations like abstract syntax trees (ASTs), control flow graphs (CFGs), etc. A control and data flow analysis is performed on a CFG and is often expressed using the lattice-based data-flow framework [24]. In this framework, a data-flow analysis is described by defining a lattice, which describes the set of values to be associated with program statements, and a set of transfer functions that describes how each program statement transforms the input values to output values. Two sets of data-flow values are maintained at each node: IN and OUT that describes the input and output values at each node. The data-flow analysis solves a set of flow equations involving the two sets IN and OUT, and transfer functions. Based on the data-flow values computed at the nodes, assertions can be made about the program behavior. For example, the Resource Leak analysis described in the motivation section maintains a set of variables representing the resources as data-flow values and it has mainly three kinds of transfer functions for handling resource acquire, resource release, and resource copy/aliasing. From hereon, whenever we refer to analysis, we mean the data-flow analysis expressed in this framework.

Definition 3.1. A Control Flow Graph of a program is a directed graph $CFG = (N, E, n_0, n_e)$, with a set of nodes N representing program statements and a set of edges E representing the control flow between statements. n_0 and n_e denote the entry and exit nodes of the CFG.

3.2 Sparse Representation

Given an analysis and a large set of programs, we perform a pre-analysis on each program to produce a sparse representation. A sparse representation is a reduced program that contains only the statements that are relevant for the analysis. Intuitively, a program statement is relevant for an analysis, if it contributes to the analysis output (or generates some information). With respect to the analysis model under consideration, the relevancy is defined as follows:

Definition 3.2. A program statement is relevant for an analysis, if there exists a non-identity transfer function for that statement in the analysis. That is, if the analysis has defined a transfer function f^k_i for statement i, where k represents the transfer function kind and $f^k \neq \iota$, then i is relevant for the analysis. In the data-flow analysis model there always exists an identity transfer function ι along with the user defined transfer functions to represent those statement that have no effect on the analysis output.

Definition 3.3. Given a program P with a set of statements S, a sparse representation is a tuple, $< P', M >$, where P' contains a subset of the statements $S' \subseteq S$, such that $\forall i \in S'$, i is a relevant statement. $M : S \rightarrow f^k$ is a map that provides the information about the kind of the transfer function that is applicable to each relevant statement i in set S'.

As CPA takes data-flow analysis and the control flow graphs (CFGs) of programs, we have to generate the sparse representations of CFGs. For this purpose, we utilize a prior work that proposes reduced control flow graphs (RCFGs) [38]. In a nutshell, an RCFG is a reduced CFG that contains only those nodes for which there exits a non-identity transfer function in the analysis. RCFG is constructed using a pre-analysis that takes an analysis specification and a CFG.
as input, extracts all the conditions for the analysis transfer functions and checks the conditions against the CFG nodes to identify analysis relevant nodes. We extended RCFG to also store the kind of the transfer function that are applicable to CFG nodes as special properties of nodes. This information is required in a later stage of the CPA to generate patterns for CFGs.

![Figure 3: Sparse representation of writeObj method shown in Figure 1.](image)

To provide a concrete example of a sparse representation, let us revisit the Resource Leak analysis described in our motivation and the writeObj method shown in Figure 1. The Resource Leak analysis contains three kinds of transfer functions: acquire, release, and copy. Using the transfer functions, we can identify the relevant statements in the writeObj method. The relevant statements for this method are at line 3 and line 7, because line 3 creates a resource variable and line 7 releases the resource by invoking the copy method and it has an associated transfer function. All other statements do not have an associated transfer function and hence are considered irrelevant and removed except some special nodes, such as START and END. RCFG also retains the branch nodes that have at least one successor with a relevant statement. The resulting sparse representation is as shown in Figure 3. This graph is a RCFG of the writeObj method. It contains two nodes 3 and 7 that have non-identity transfer functions acquire and release respectively and a special branch node marked C.

3.3 Analysis Equivalence

Given the sparse representations of programs, our next problem is to find similarities between them. In case of sparse representations of CFGs, finding similarities is a graph isomorphism problem with respect to certain labeling scheme. A prior work gspan [43] has proposed using a Depth-first search (DFS) code as the unique canonical label for graphs to find isomorphism. We utilize the DFS code technique for obtaining the canonical form of the sparse representation.

Given a graph (directed or undirected) with nodes and edges, a **DFS Code** is an edge sequence constructed based on a linear order, ≺, by following rules (assume \(e_1 = (i_1, j_1) \), \(e_2 = (i_2, j_2) \), where \(e_1, e_2 \) are edges and \(i, j \) are node ids):

- if \(i_1 = i_2 \) and \(j_1 < j_2 \), \(e_1 ≺ e_2 \),
- if \(i_1 < j_1 \) and \(j_1 = i_2 \), \(e_1 ≺ e_2 \), and
- if \(e_1 ≺ e_2 \) and \(e_2 ≺ e_3 \), \(e_1 ≺ e_3 \).

Each edge in the DFS code is represented as a 5-tuple: \(<i, j, l(i, j), l_1> \) where \(i, j \) are node ids, \(l_1, l_2 \) are node labels, and \(l(i, j) \) represents the edge label of an edge \((i, j)\).

In the DFS code that we generate, we use only 4-tuple and ignore the edge label \(l(i, j) \), because it is only required for multi-edge graphs and CFGs are not multi-edge graphs. For node labels, we use the transfer function kinds. For instance, for the Resource Leak analysis, we use acquire, release and copy for node labels. Note that, every node in the sparse representation of the CFG has an associated non-identity transfer function. Figure 4 shows the DFS code constructed for the sparse graph of the writeObj method shown in Figure 1. As shown in the figure, each edge is represented as a 4-tuple. For instance, edge from node 2 to node 3 is represented as \(<2, 3, \text{acquire}, \text{release}> \). By following the the ≺ order, we obtained the DFS code shown in the figure.

![Figure 4: DFS code for the sparse control flow graph of the writeObj method shown in Figure 1.](image)

An undirected graph could have several DFS codes (based on the starting node) and the minimum DFS code provides the canonical label, such that if two graphs \(G \) and \(G' \) that have the same minimum DFS codes are isomorphic to each other [43].

Theorem 3.4 (Isomorphic graphs produce equal DFS code). Given two graphs \(G \) and \(G' \), \(G \) is isomorphic to \(G' \) if and only if their minimum DFS codes are equal.

Proof. The proof is based on [43].

Theorem 3.5 (A CFG has a unique, minimal DFS code). A CFG always has a single DFS code that is minimum, because there exists a single start node and the edges are directed.

Proof Sketch. The proof is by contradiction. Consider that a CFG has two DFS codes \(C_1 \) and \(C_2 \). Both \(C_1 \) and \(C_2 \) must have the same first edge because there exists only one start node for a CFG. From the destination node of the first edge, \(C_1 \) and \(C_2 \) might have two
When we say similar, we mean that the analysis executes exactly the same code sequence. However, this is not possible because the next edge is picked by following the linear order \(\prec_T \), which is deterministic and it always picks the same edge. If this process of picking the next edge is continued to form the edge sequences in \(C_1 \) and \(C_2 \), we can see that both \(C_1 \) and \(C_2 \) must have the same edges in the same order in the sequences.

Given that we have a mechanism to encode the sparse graphs as DFS codes, we define analysis equivalence of sparse representations of CFGs as graphs with same DFS code.

Definition 3.6. (Analysis Equivalence) Two CFGs \(G_1 \) and \(G_2 \) are equivalent for a given analysis or analysis equivalent if the DFS codes of the corresponding sparse graphs are same.

To provide a concrete example, consider the Resource Leak analysis and the three methods `writeObj`, `main`, and `loadPropertyFile` shown in Figure 1. Although the CFGs of these three methods are different, after removing all the irrelevant nodes, the sparse graphs obtained are same, as shown in Figure 3. For this sparse graph, the DFS code constructed is shown in Figure 4. As these three methods have the same DFS code, their sparse representations are analysis equivalent.

An important property of the analysis equivalent sparse representations is that the analysis output for these graphs are similar. When we say similar, we mean that the analysis executes exactly same set of instructions to compute results for nodes in the two sparse representations. We formulate this property as a theorem and provide proof sketch.

Theorem 3.7 (Analysis equivalence implies result similarity). Two analysis equivalent sparse representations produces similar results.

Proof Sketch. Two analysis equivalent sparse representations will have same number of nodes and each node is associated with the same kind of transfer function, which means that the result produced at nodes are similar (by the application of the transfer functions). The flow of results between the nodes in two sparse representations is also similar because the edges between the nodes in the two sparse representations are also similar. This means that, if the two sparse representations starts off with an initial state (often top element of the data-flow analysis), they must produce similar results.

3.4 Leveraging Analysis Specific Similarity

In the previous section, we described a technique for identifying the analysis specific similarity between programs, the final step of CPA is to cluster programs and reuse the analysis results. We use a pattern database [25] to store the DFS codes of the sparse representations as keys and analysis results as values. As described in our overview diagram shown in Figure 2, after producing the DFS codes for sparse representations, our approach first checks whether a result is already present in the database. If the presence of the DFS code as a hit and the absence as miss. We run the analysis on the sparse representations to produce the result and store the result along with the DFS code into the database for future use.

We require that analysis results of sparse representations cannot contain any concrete program data, for instance, variable names. While the analysis can compute any concrete result for each program statement, the analysis results for the sparse representation must be free from the concrete program data. For example, Resource Leak analysis collects and propagates the variable names of resource variables, however at the end it produces a boolean assertion indicating whether a resource leak exists in the program? This is not a severe restriction for CPA to be applicable, because the analyses can still compute program specific outputs, however the final output has to be an assertion or any result that is free from program specific data.

4 EVALUATION

The main goal of our approach is to accelerate large scale source code analysis that involves control and data-flow analysis, hence we mainly evaluate the performance. However, we also present our correctness evaluation along with some interesting results of applying CPA. Below are the research questions answered in this section.

- **RQ1.** How much can our approach (CPA) speed up the source code analyses that involves analyzing thousands and millions of control flow graphs?
- **RQ2.** How much reuse opportunity exists when performing collective program analysis?
- **RQ3.** What is the impact of the abstraction (in the form of sparse representation) on the correctness and precision of the analysis results?

4.1 Performance

4.1.1 Methodology. We compare our approach against a baseline that runs the analysis on all programs in the dataset without any optimization or reuse. We also compare against a prior work [38, 39] that identifies and removes irrelevant statements prior to analyzing programs. We measure the analysis time for all three approaches (CFG, RCFG, and CPA) and compute the percentage reduction in the analysis time of CPA over CFG (denoted as \(R \)) and RCFG (denoted as \(R' \)) respectively. The analysis times were averaged over the last three runs, when the variability across these measurements is minimal (under 2%) by following the methodology proposed by Georges et al. [16]. Note that, the cache (or pattern database) is cleared after every run to ensure same setting for each run. Our experiments were run on a machine with 24 GB of memory and 24-cores, running on Linux 3.5.6-1.fc17 kernel.

4.1.2 Analyses. We have used 10 source code analyses to evaluate our approach as listed in Table 1. We used several criteria to select the candidate analyses. We have included analyses to obtain maximum coverage over the flow analysis properties, such as analysis direction (forward, backward), merge operation (union, intersection), complexity of the analysis, and complexity of the data-structures used to store the analysis results at nodes. The analyses are written using Boa [11–13], a domain specific language (DSL) for ultra-large-scale mining and we have used Boa compiler and runtime for executing the analyses. Next, we briefly describe each analysis used in our evaluation.
Avail. [24] Available expression analysis tries to find optimization opportunities in the source code, such as value of a binop expression computed once can be reused in the later program points, if the variables in the expression are not re-defined. This is a standard compiler optimization drawn from the textbook. We included this analysis to represent how an optimization problem can benefit from CPA. The analysis will report if there exists one or more optimization opportunities.

Dom. [2] Control flow dominators are useful in many analyses that requires control dependence, for instance in computing the program dependence graph (PDG), however computing the dominators is expensive, hence we included this in our list of analyses to demonstrate how our technique can accelerate computing dominators. This is also a special kind of analysis, where all nodes are relevant for the analysis and the sparse representation constitutes the whole CFG. The analysis will report a map containing a list of dominators for each CFG node.

Escape. [42] Escape analysis computes whether the objects allocated inside methods stay within the method (captured) or escapes to another methods. This information is useful to decide whether to allocate memory for such objects in the stack instead of heap. The analysis outputs true, if there exists any captured objects, otherwise false.

Leak. [37] This is a resource leak checker that captures the resource usage in programs to identify possible leaks. The analysis tracks all 106 JDK resource related API usages in programs. If any resource acquired is not released at the exit node, it outputs that leak may exist.

Live. [24] This analysis tracks the liveness of local variables used in the program. There exists many client applications of this analysis such as identifying and removing the dead code, register allocation, etc. This analysis simply reports all the variable definition and use sites along with their control flow dependencies.

MayAlias. [30] Precisely computing the alias information is expensive and sometimes may not be possible. In such situations, computing the may alias information by following the direct assignments can be handy. This may alias analysis computes the alias information and reports the alias sets.

Null. [7] This analysis checks if there exists a dereference that is post-dominated by a null check. Such a pattern indicates that the dereference may cause null pointer exception, because it can be null. The analysis reports if there exists such problems in the program.

Pointer. [31] Pointer or points-to analysis implemented here is a flow-sensitive and context-insensitive points-to analysis. It computes the points-to graph. A points-to graph provides the information whether the variables in the program may point to the same memory location. This analysis outputs the points-to graph with abstract variables and nodes (meaning concrete variable names are mapped to symbols).

Safe. [37] The safe synchronization checker looks for the lock acquire/release patterns to identify bugs. Acquiring locks and not releasing them may cause deadlock and starvation in the program. The analysis tracks all the variables on which the lock is acquired and checks if the locks on these variables are released on every program path. If not, it reports that the problem exists.

Taint. [15] Taint analysis detects and reports possible vulnerabilities by performing a taint analysis. The analysis identifies the variables that read data from external inputs like console, tracks their dataflow, and checks if the data from these variables are written to output.

Datasets. We have used two datasets for evaluating CPA. The first dataset consists of all projects included in the DaCapo benchmark [6], a well-established benchmark of Java programs. This dataset contains 45,054 classes and 286,888 non-empty methods. The DaCapo dataset is prepared using the GitHub project links of the 10 DaCapo projects. The second dataset consists of 4,938 open source SourceForge projects. This dataset consists of 191,945 classes, and 6,741,465 non-empty method. Note that, the order of methods in our datasets is random and it is determined by the dataset creators [11]. As such, the order does not influence CPA, while prior caching does.

Results and Analysis. Table 2 compares our approach (CPA) against the baseline (CFG) and the prior work (RCFG). The analysis time in case of CFG is the actual analysis time, whereas, in case of RCFG, it includes the two overheads (to identify and remove the irrelevant nodes) and in case of CPA, it includes several overheads (to produce the sparse graph, to generate pattern, to check the pattern database, and retrieve the result in case of hit, and to persist the results in case of miss). The analysis times are reported in milliseconds. For some analysis, the analysis times are low, for instance Safe. This is mainly because we have optimized all our analyses to skip through the irrelevant methods (methods that do not contain the information the analysis is looking for). Finding and skipping through the irrelevant methods is done at a low cost.

Table 2 shows our results. The two columns R and R’ shows the percentage reduction in the analysis time of CPA over CFG and RCFG respectively. On average CPA was able to reduce the analysis time by 69% over CFG and 36% over RCFG (averaged over both DaCapo and SourceForge datasets, which are individually 34% and 39%). Note that, for Dom, the CFG and RCFG times are exactly same, because for this analysis all nodes are relevant, hence RCFG is simply CFG. For Leak analysis on DaCapo dataset, CPA shows negative gain when compared to RCFG. This happens mainly because of the low number of instances on which the analysis is run. As shown in Table 4, under DaCapo, the Leak analysis is run on only 220 unique methods.
Table 2: Reduction in the analysis time of CPA.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>DaCapo</th>
<th>SourceForge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFG</td>
<td>R1</td>
</tr>
<tr>
<td>Avail</td>
<td>3274</td>
<td>1822</td>
</tr>
<tr>
<td>Dom</td>
<td>247855</td>
<td>247855</td>
</tr>
<tr>
<td>Escape</td>
<td>12624</td>
<td>8079</td>
</tr>
<tr>
<td>Leak</td>
<td>227</td>
<td>35</td>
</tr>
<tr>
<td>Live</td>
<td>5470</td>
<td>4329</td>
</tr>
<tr>
<td>MayAlias</td>
<td>7823</td>
<td>4137</td>
</tr>
<tr>
<td>Null</td>
<td>3841</td>
<td>2254</td>
</tr>
<tr>
<td>Pointer</td>
<td>6246</td>
<td>3367</td>
</tr>
<tr>
<td>Safe</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Taint</td>
<td>499</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DaCapo</th>
<th>SourceForge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFG</td>
<td>R1</td>
</tr>
<tr>
<td>CPA-UB</td>
<td>109031</td>
<td>3886</td>
</tr>
<tr>
<td>CPA-CR</td>
<td>5329</td>
<td>2238</td>
</tr>
<tr>
<td>CPA</td>
<td>15108</td>
<td>3886</td>
</tr>
<tr>
<td>CPA-UB</td>
<td>3926</td>
<td>12654</td>
</tr>
<tr>
<td>CPA-CR</td>
<td>109031</td>
<td>3886</td>
</tr>
<tr>
<td>CPA</td>
<td>15108</td>
<td>3886</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DaCapo</th>
<th>SourceForge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFG</td>
<td>R1</td>
</tr>
<tr>
<td>CPA-UB</td>
<td>109031</td>
<td>3886</td>
</tr>
<tr>
<td>CPA-CR</td>
<td>5329</td>
<td>2238</td>
</tr>
<tr>
<td>CPA</td>
<td>15108</td>
<td>3886</td>
</tr>
<tr>
<td>CPA-UB</td>
<td>3926</td>
<td>12654</td>
</tr>
<tr>
<td>CPA-CR</td>
<td>109031</td>
<td>3886</td>
</tr>
<tr>
<td>CPA</td>
<td>15108</td>
<td>3886</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DaCapo</th>
<th>SourceForge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFG</td>
<td>R1</td>
</tr>
<tr>
<td>CPA-UB</td>
<td>109031</td>
<td>3886</td>
</tr>
<tr>
<td>CPA-CR</td>
<td>5329</td>
<td>2238</td>
</tr>
<tr>
<td>CPA</td>
<td>15108</td>
<td>3886</td>
</tr>
<tr>
<td>CPA-UB</td>
<td>3926</td>
<td>12654</td>
</tr>
<tr>
<td>CPA-CR</td>
<td>109031</td>
<td>3886</td>
</tr>
<tr>
<td>CPA</td>
<td>15108</td>
<td>3886</td>
</tr>
</tbody>
</table>

Figure 5: % benefit of the upper bound achieved by CFG, RCFG, CPA. Higher bars are better.

and the cost of CPA overheads may exceed the benefit, hence we do not expect CPA to improve the performance. Similar situation can be also be seen for Safe analysis.

CPA uses an online strategy of caching the analysis results at the same time as running the analysis on millions of programs. CPA can also be used with prior caching, hence we compute the ideal gain (or an upper-bound) by re-running the experiments on the same dataset after caching the results in the first run. The analysis times are reported in Table 2 under CPA-UB column. Figure 5 helps to understand how far CPA, RCFG, and CPA are from the ideal speedup (CPA-UB). As it can be seen in Figure 5, for most analysis, CPA is the closest to 100%, when compared to others (CFG and RCFG), except for Leak and Safe. The reason is as explained earlier, the number of methods on which the analysis is run is small, hence the overheads of CPA exceeds its benefits. Another interesting observation that can be made is that except for Leak and Safe, for all other analysis, there exists substantial opportunities to improve the performance of CPA to get it closer to CPA-UB. This can be performed by training CPA on some representative projects, caching the results, and using them on the test projects.

4.1.5 Cross Project. We also performed a cross-validation experiment, where we excluded one project at a time from the DaCapo dataset that contains a total of 10 projects, ran the analysis, cached the results, and measured the analysis time for the excluded project. We repeated this experiment and aggregated the analysis times for all 10 projects. We reported the analysis times under CPA-CR column in Table 2. As seen in the CPA-CR column, CPA-CR analysis time lies between CPA and CPA-UB. For some analyses CPA-CR is able to nearly meet the upper-bound. For example, Dom. For Leak and Taint, prior caching had less effect on the analysis time, mainly because the number of instances on which the analysis is run was small. For other analyses, a consistent speedup is seen over CPA. This suggests that CPA with some prior caching can improve the performance over the online-strategy.

4.1.6 CPA Components. For every CFG of the method to be analyzed, CPA produces a sparse representation of the CFG, generates a pattern that represents the sparse graph, and checks the pattern database for a result. The overhead for this stage is represented as pattern in Table 3. When there is a miss, i.e., the result does not exist for a pattern, then CPA runs the analysis to produce a result (analysis stage) and cache the result (persist stage). When there is a hit, i.e., a result is found, nothing else needs to be done. It is interesting to see how the overall CPA time is distributed across these components. The component results are shown in Table 3, where pattern, analysis, and persist are the three components. The absolute times are in milliseconds and we also show the contributions of each of the three components towards CPA time (numbers inside parentheses).

It can be seen that, persist time is almost always negligible. The pattern time, which is the time to construct the sparse graph, generate pattern, and check the database sometimes exceeds the actual analysis time. For example, Avail, Leak, and Safe. This is mainly because in these analyses, the amount of relevant nodes are very small. Thus, the time for removing the irrelevant nodes to construct the sparse graph becomes substantial.

4.1.7 Reuse Opportunity. Table 2 shows that our approach was able to substantially reduce the analysis time across 10 analyses and two datasets. The reduction mainly stems from the amount of reuse opportunity that exists in large datasets of programs. We measured the total number of unique graphs to compute the reuse percentage. The results are shown in Table 4. For all the analyses, CPA was
Table 3: CPA time distribution across four components. The absolute times are in milliseconds and the values inside "()" are the contribution of the component towards CPA time.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>CPA</th>
<th>pattern</th>
<th>analysis</th>
<th>persist</th>
<th>CPA</th>
<th>pattern</th>
<th>analysis</th>
<th>persist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avail</td>
<td>1368</td>
<td>863 (63%)</td>
<td>496 (36%)</td>
<td>8 (1%)</td>
<td>24688</td>
<td>16454 (67%)</td>
<td>8095 (33%)</td>
<td>138 (1%)</td>
</tr>
<tr>
<td>Dom</td>
<td>75559</td>
<td>1875 (02%)</td>
<td>73661 (97%)</td>
<td>23 (0%)</td>
<td>3614844</td>
<td>32437 (01%)</td>
<td>3582180 (99%)</td>
<td>225 (0%)</td>
</tr>
<tr>
<td>Escape</td>
<td>3588</td>
<td>892 (25%)</td>
<td>2686 (75%)</td>
<td>10 (0%)</td>
<td>71086</td>
<td>21206 (30%)</td>
<td>49632 (70%)</td>
<td>247 (0%)</td>
</tr>
<tr>
<td>Leak</td>
<td>39</td>
<td>30 (77%)</td>
<td>7 (18%)</td>
<td>1 (3%)</td>
<td>458</td>
<td>342 (75%)</td>
<td>110 (24%)</td>
<td>5 (1%)</td>
</tr>
<tr>
<td>Live</td>
<td>2628</td>
<td>811 (31%)</td>
<td>1807 (69%)</td>
<td>8 (0%)</td>
<td>65369</td>
<td>17776 (27%)</td>
<td>47416 (73%)</td>
<td>176 (0%)</td>
</tr>
<tr>
<td>MayAlias</td>
<td>2238</td>
<td>862 (39%)</td>
<td>1368 (61%)</td>
<td>7 (0%)</td>
<td>43657</td>
<td>16167 (37%)</td>
<td>27364 (63%)</td>
<td>125 (0%)</td>
</tr>
<tr>
<td>Null</td>
<td>1365</td>
<td>252 (18%)</td>
<td>1108 (81%)</td>
<td>4 (0%)</td>
<td>36885</td>
<td>5027 (14%)</td>
<td>31777 (86%)</td>
<td>80 (0%)</td>
</tr>
<tr>
<td>Pointer</td>
<td>2019</td>
<td>879 (44%)</td>
<td>1130 (56%)</td>
<td>8 (0%)</td>
<td>40446</td>
<td>17056 (42%)</td>
<td>23223 (57%)</td>
<td>166 (0%)</td>
</tr>
<tr>
<td>Safe</td>
<td>2</td>
<td>2 (71%)</td>
<td>0 (00%)</td>
<td>0 (0%)</td>
<td>16</td>
<td>13 (81%)</td>
<td>2 (13%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Taint</td>
<td>123</td>
<td>52 (43%)</td>
<td>68 (55%)</td>
<td>2 (1%)</td>
<td>2266</td>
<td>784 (35%)</td>
<td>1466 (65%)</td>
<td>15 (1%)</td>
</tr>
</tbody>
</table>

Table 4: Amount of reuse opportunity available in various analysis.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>DaCapo Total</th>
<th>Unique</th>
<th>Reuse</th>
<th>SourceForge Total</th>
<th>Unique</th>
<th>Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avail</td>
<td>286888</td>
<td>15402</td>
<td>95%</td>
<td>6741465</td>
<td>266081</td>
<td>96%</td>
</tr>
<tr>
<td>Dom</td>
<td>286888</td>
<td>20737</td>
<td>93%</td>
<td>6741465</td>
<td>345715</td>
<td>95%</td>
</tr>
<tr>
<td>Escape</td>
<td>286888</td>
<td>23347</td>
<td>92%</td>
<td>6741465</td>
<td>430978</td>
<td>94%</td>
</tr>
<tr>
<td>Leak</td>
<td>3087</td>
<td>220</td>
<td>93%</td>
<td>71231</td>
<td>2741</td>
<td>96%</td>
</tr>
<tr>
<td>Live</td>
<td>286888</td>
<td>19417</td>
<td>93%</td>
<td>6741465</td>
<td>366315</td>
<td>95%</td>
</tr>
<tr>
<td>MayAlias</td>
<td>286888</td>
<td>12652</td>
<td>96%</td>
<td>6741465</td>
<td>211010</td>
<td>97%</td>
</tr>
<tr>
<td>Null</td>
<td>49036</td>
<td>7857</td>
<td>84%</td>
<td>746539</td>
<td>148671</td>
<td>80%</td>
</tr>
<tr>
<td>Pointer</td>
<td>286888</td>
<td>16150</td>
<td>94%</td>
<td>6741465</td>
<td>313337</td>
<td>95%</td>
</tr>
<tr>
<td>Safe</td>
<td>77</td>
<td>14</td>
<td>82%</td>
<td>1310</td>
<td>89</td>
<td>93%</td>
</tr>
<tr>
<td>Taint</td>
<td>6169</td>
<td>1208</td>
<td>80%</td>
<td>147446</td>
<td>22664</td>
<td>85%</td>
</tr>
</tbody>
</table>

Table 5 lists the transfer functions for all our 10 analyses. The names of these transfer functions provides information about the kind of statements that are relevant for the analyses. For instance, def(v) transfer function applies to all statements that have variable definitions. As we use transfer function names to label the nodes and produce the pattern, these names are used in the top patterns discussed next.

In case of Taint analysis, we had a total of 6169 methods in the DaCapo dataset that were analyzed (other methods didn’t had relevant code) and they formed 1208 unique sparse graphs. The analysis reported possibility of vulnerabilities for 101 sparse graphs. Figure 6 shows the top 3 patterns along with their frequencies (a), (b), and (c). Our analysis did not report any vulnerabilities for any methods that have the sparse graphs shown in (a), (b), (c), because all these three sparse graphs only have either input or output nodes. For vulnerability to occur, both must exists. Consider (d) which has both input and output was one of the frequent vulnerability pattern in the DaCapo dataset. We manually verified 20 out of 101 reported instances for the existence of possible vulnerabilities.

In case of Safe analysis that checks for the correct use of lock/unlock primitives using JDK concurrent libraries, we had 76 instances reported correct and 1 reported as having a problem. Out of the 76, 50 of them followed a single pattern that is shown in Figure 7. This is a correct usage pattern for lock/unlock. The one instance
that was reported problematic was a false positive and it requires inter-procedural analysis to eliminate it.

![Figure 8: Most frequent buggy resource leak pattern.](image)

Leak analysis results were most surprising for us. There existed 3087 usages of JDK resource related APIs (JDK has 106 resource related APIs) and our analysis reported 2277 possible leaks. Out of these 336 were definitely leaks and others were possible leaks and confirming them would require inter-procedural analysis. Out of the 336 definite leaks, the top pattern appeared in 32 methods. Figure 8 shows this pattern.

4.2 Correctness and Precision

In §3.3 we provided a proof sketch as to why the analysis results of CPA must match with that of CFG. To empirically evaluate the correctness of the results, we conducted two experiments using all 10 analysis and DaCapo dataset. In the first experiment, we compared the analysis result of CFG and CPA for every method that is analyzed. Table 6 provides information about the results computed for each analysis. We were able to match the two results perfectly.

As for most of the analysis in Table 6 the computed results are just boolean values, we double-check the results by profiling the transfer functions executed for CFG and the sparse graph of CPA, and compare the sequence of transfer functions. We skip through the identity transfer functions in case of CFG, as the CFG may contain many irrelevant nodes. As the order of nodes visited in both CFG and sparse graph of CPA are same, we were able to see a 100% match.

4.3 Limitations

In this work we have applied CPA to accelerate analyses at method-level, where results for each method is computed independently without using the results at the method call sites. Instead of applying the results of methods at their call sites we have adopted an over-approximation strategy. As such, there are no theoretical limitations preventing the use of our technique in a compositional whole-program analysis setting, where the results of the called methods can be used at their call sites, if available. This design choice was mainly due to the analysis framework used in our evaluation, which does not support whole-program analysis as of this writing.

Another limitation that currently exists in CPA is that it can only store abstract analysis results. For instance, boolean value to indicate the existence of certain kinds of bug. CPA also allows using abstract variables and location names in the analysis as results. For instance, variable \(v_0 \) points to the first variable encountered while analyzing the method statements. Similarly, the location \(loc_0 \) points to the first relevant statement that exists in the sparse representation of the method. The abstract variables and location names helped us to model many important analyses, such as Live, Escape, Pointer, etc. In future, we plan to support better output types.
5 RELATED WORKS

Our work on CPA is related to the prior work on both improving the efficiency of software analysis and finding software clones.

5.1 Improving the efficiency of source code analysis

There exists a trade off between improving the efficiency of the analysis and improving the accuracy of the analysis results. Removing the unimportant parts of the code before analyzing it has been a popular choice [3, 8, 29, 36, 38]. For instance, Upadhyaya and Rajan [38] proposed RCFG a reduced control flow graph that contains only statements that are related to analysis. Our work on CPA has adopted the RCFG work to produce the sparse graph. CPA uses RCFG as its sparse representation to cluster similar graphs and reuse the analysis results to further accelerate analyses. As we have shown in our evaluation, CPA was able to achieve on average a 36% speedup over RCFG. There also exists other sparse representations such as sparse evaluation graph (SEG) [8] that are more suitable for def-use style data-flow analysis. There exists works that eliminates unnecessary computations in the traversal of the program statements to improve the efficiency of analysis [4, 36]. These techniques remove the unnecessary iterations to improve the efficiency, whereas our work removes the unnecessary statements to produce sparse graphs and also reuses the results by clustering sparse graphs.

Allen et al. [3] and Smaragdakis et al. [29] have proposed a pre-analysis stage prior to actual analysis to scale points-to analysis to large code bases. They perform static analysis and program compaction to remove statements that do not contribute to the points-to results. Their work is specialized for scaling points-to analysis, whereas CPA is more general, in that it can accelerate analysis that use data-flow analysis and expressed using the lattice framework.

Program slicing is a fundamental technique to produce a compilable and runnable program that contains statements of interest specified by a slicing criteria [41]. Many slicing techniques have been proposed [35]. Our pruning technique is similar to slicing, in that we also remove the irrelevant statements, however our pruning technique is a pre-processing step rather than a transformation and it does not produce a compilable and runnable code like slicing. Slicing cannot be used for our purpose, because the program statements of interest are not known. Even if the statements of interest are known, slicing may includes statements (affecting the values of variables at program points of interest) that may not contribute to the analysis output. Our technique only includes statements that contribute to the analysis output.

Reusing the analysis results is another way to improve the efficiency of program analysis [17, 19, 27]. Kulkarni et al. [19] proposed a technique to accelerate program analysis in Datalog. The idea of their technique is to run an offline analysis on a corpus of training programs to learn the analysis facts and then reuses the learnt facts to accelerate the analysis of other programs that share some code with the training corpus. Inter-procedural analysis are often accelerated by reusing the analysis results in the form of partial [17] and complete [27] procedure summaries, where the analysis results of procedures can be reused at their call sites. Our technique does not require that programs share code, it only requires that programs executed same set of analysis instructions to produce results.

5.2 Finding software clones

Our technique is also related to code clones [28], as CPA also clusters sparse representations of programs to reuse the analysis results. There exists different types of clones. Syntactic clones are look alike code fragments, semantic clones share common expressions and they have similar control flows, and functional clones are similar in terms of the inputs and outputs. There are also other approaches that goes beyond structural similarity, like code fingerprints[22], behavioral clones [14, 32, 33], and run-time behavioral similarity [10].

We did not use syntactic clones (token-based or AST-based), because the benefits will be limited to copy-and-paste code. Semantic clones (code fragments with similar control and data flow) could not be used, because of lack of guarantee that analysis output will be similar. Moreover, semantically different code fragments may produce similar output for a given analysis and we would miss out on those. We cannot use functional clones (code fragments with similar input/output), because they may not produce similar analysis output. We also could not use behavioral clones (code fragments that perform similar computation captured using dynamic dependence graphs), because they cannot guarantee similar analysis output. An analysis may produce similar output for code fragments that are not behavioral clones. Further, in our setting, while analyzing thousands of projects, it is not feasible to instrument the code, run them, collect traces, and build dynamic dependence graphs to detect behavioral clones.

6 CONCLUSION AND FUTURE WORK

We proposed collective program analysis (CPA), a technique for accelerating large scale source code analysis by leveraging analysis specific similarity. The key idea of CPA is clustering programs that are similar for the purpose of the analysis, such that it is sufficient to run the analysis on one program from each cluster to produce result for others. To find analysis specific similarity between programs, a sparse representation and a canonical labeling scheme was used. The technique is applied to source code analysis problems that requires data-flow analysis. When compared to the state-of-the-art, where the analysis is directly performed on the CFGs, CPA was able to reduce the analysis time by 69%. When compared to an optimization technique that removes the irrelevant parts of the program before running the analysis, CPA was able to reduce the analysis time by 36%. Both of these results were consistent across two datasets that contained several hundred thousand methods to over 7 million methods. The sparse representation used in the CPA was able to create a high percentage of reuse opportunity (more than 80%). In future, we plan to extend CPA to whole-program analysis and extend CPA to support more output types.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CCF-15-18897, CNS-15-13263, and CCF-14-23370. We thank Dr. Wei Le and anonymous ICSE 2018 reviewers for their comments and suggestions.
REFERENCES

[43] Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-Based Substructure Pattern Mining. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM ’02). IEEE Computer Society, Washington, DC, USA, 721–. http://dl.acm.org/citation.cfm?id=844380.844811