The Knuth-Morris-Pratt Algorithm

The original KMP algorithm does not compute the failure function through Z-values.

- Start with $s_{p1} = 0$.
- Assume we have s_{pi} for $i = 1, 2, \ldots, k$.
- **Goal:** Compute s_{pk+1}.

\[P \begin{array}{c} \alpha \cr s_{pk} \end{array} \begin{array}{c} x \cr k \end{array} +1 \]

Let $\beta' = \beta x$ be the prefix of length s_{pk+1} of P.

\[P \begin{array}{c} \beta' \cr s_{pk+1} \end{array} \begin{array}{c} x \cr k \end{array} +1 \]

\((*) \) β is the longest proper prefix of $P[1 \ldots k]$ that matches a suffix of $P[1 \ldots k]$ and where $P[|\beta| + 1] = x$.

Lemma. For all k, $s_{pk+1} \leq s_{pk} + 1$. Further, $s_{pk+1} = s_{pk} + 1$ if and only if $P[s_{pk}+1] = P[k+1]$.

\[P \begin{array}{c} \beta' \cr s_{pk+1} \end{array} \begin{array}{c} \beta' \cr k \end{array} x \]

What if $P[s_{pk}+1] \neq P[k+1]$?

\[P \begin{array}{c} \alpha \cr s_{pk} \end{array} \begin{array}{c} \beta \cr k \end{array} \begin{array}{c} x \cr k+1 \end{array} \]

\((**) \) β is the longest proper prefix of $P[1 \ldots s_{pk}]$ that matches a suffix of $P[1 \ldots s_{pk}]$ and where $P[|\beta| + 1] = x$.

\[P \begin{array}{c} \alpha \cr s_{pk} \end{array} \begin{array}{c} \beta \cr k \end{array} \begin{array}{c} x \cr k+1 \end{array} \]

\((**) \) β is the longest proper prefix of $P[1 \ldots s_{pk}]$ that matches a suffix of $P[1 \ldots s_{pk}]$ and where $P[|\beta| + 1] = x$.

\[P \begin{array}{c} \alpha \cr s_{pk} \end{array} \begin{array}{c} \beta \cr k \end{array} \begin{array}{c} x \cr k+1 \end{array} \]
The reduction

- Find longest proper prefix of $P[1 \ldots sp_k]$ that matches a suffix of $P[1 \ldots sp_k]$ — its length must be $sp[sp_k]$.
- If $P[sp[sp_k] + 1] = x$, then we’re done: $sp_{k+1} = sp[sp_k] + 1$. Otherwise, recurse again.
- Eventually, either valid prefix is found or beginning of P is reached. In latter case, if $P[1] = x$, set $sp_{k+1} = 1$; else set $sp_{k+1} = 0$.

$SP(P)$:

\[
sp_1 \leftarrow 0
\]
\[
\text{for } k \leftarrow 1 \text{ to } n - 1 \\
\quad \text{do } x \leftarrow P[k+1]; \ v \leftarrow sp_k \\
\quad \text{while } P[v + 1] \neq x \text{ and } v \neq 0 \\
\quad \quad \text{do } v \leftarrow sp_v \\
\quad \text{if } P[v + 1] = x \\
\quad \quad sp_{k+1} \leftarrow v + 1 \\
\quad \text{else } \ sp_{k+1} \leftarrow 0 \\
\text{return } sp
\]

$SP'(P)$:

\[
sp'_1 \leftarrow 0
\]
\[
\text{for } i \leftarrow 2 \text{ to } n - 1 \\
\quad \text{do } v \leftarrow sp_i \\
\quad \text{if } P[v + 1] \neq P[i + 1] \\
\quad \quad \text{then } sp'_i \leftarrow v \\
\quad \text{else } sp'_i \leftarrow sp'_v \\
\quad \text{return } sp'
\]

Exact Matching for Sets of Patterns

Problem: Find all occurrences in T of any pattern in the set of patterns $P = \{P_1, \ldots, P_z\}$.

Naive solution: Run KMP or BM z times. If n is the total length of all the patterns, then total time is $O(n + zm)$.

Aho-Corasick Algorithm: An extension of KMP that solves set matching in $O(n + m + k)$ time, where $k =$ number of occurrences in T of patterns in P.
A **keyword tree** for set of patterns $P = \{P_1, \ldots, P_z\}$ is a rooted directed tree K such that:
1. every edge is labeled with one character,
2. any two edges out of the same node have different labels,
3. each P_i maps to some node v in K such that the characters on the path from the root spell out P_i, and every leaf of K is mapped to by some P_i.

A keyword tree for P can be constructed in $O(n)$ time.

Naive application of keyword trees:
- To find matches that begin at $T[l]$, $l = 1, \ldots, m$, follow unique path in K that matches a substring of T starting at l. Numbered nodes along the path indicate all patterns in P that start at position l. Time $= O(\min\{n, m\})$
- Repeat this for each l. Time $= O(nm)$

Dictionary problem: The patterns are the words in the dictionary. To see if a word is in the dictionary, follow a path in keyword tree.

Assumption. No pattern in P is a proper substring of any other pattern in P.

Definition. Let v be a node in K. The **label** $L(v)$ of v is the concatenation of the characters on the path from the root to v in K.

Definition. For each node v in K, $lp(v)$ is the length of the longest proper suffix of $L(v)$ that is also a prefix of some pattern in P.

Lemma. Let α be the $lp(v)$-length suffix of $L(v)$. Then there is a unique node in K whose label is α.

Definition. For each node v in K, n_v is the unique node in K labeled with a suffix of $L(v)$ of length $lp(v)$. When $lp(v) = 0$, n_v is the root of K. The pair (v, n_v) is the **failure link** at v.
Algorithm ACSearch:
\[
l \leftarrow 1; \quad c \leftarrow 1; \quad w \leftarrow root(K)
\]
repeat
\[
\text{while there exists an edge } (w, w') \text{ labeled } T[c] \\
\quad \text{do } \quad \text{if } w' \text{ is numbered by } P_i \\
\quad \quad \text{then report occurrence of } P_i \\
\quad \quad \text{starting at position } l \text{ of } T \\
\quad w \leftarrow w'; \quad c \leftarrow c + 1 \\
\quad w \leftarrow n_w; \quad l \leftarrow c - lp(w)
\]
until \(c > n \)

Algorithm \(n_v \):
\[
\text{let } v' \text{ be the parent of } v \text{ in } K \\
\text{let } x \text{ be the character on edge } (v', v) \\
w \leftarrow n_v' \\
\text{while there is no } (w, w') \text{ labeled } x \text{ and } w \neq \text{root} \\
\quad \text{do } \quad w \leftarrow n_w \\
\text{if there exists a } (w, w') \text{ labeled } x \\
\quad \text{then } n_v \leftarrow w' \\
\quad \text{else } n_v \leftarrow root
\]

To find all the failure links in the keyword tree \(K \):

order nodes in \(K \) by non-decreasing distance from the root (breadth-first search order)
for each node \(v \) in \(K \), in order
\[
\text{do } \quad \text{apply Algorithm } n_v \text{ to } v
\]

Theorem. The total time needed to find all the failure links is \(O(n) \).

Proof sketch. Let \(t = |P_i| \).

If nodes \(v' \) and \(v \) are nodes on the path from the root to the node labeled \(i \) in \(K \), and \(v' \) is the parent of \(v \), then \(lp(v) \leq lp(v') + 1 \).
\[
\Rightarrow \text{total increase in } lp() \text{ over all nodes on path is } t.
\]

On the other hand, each time \(w \) is set inside the while loop, the potential value for \(lp(v) \) decreases by at least 1. But \(lp() \) is never negative.
\[
\Rightarrow \text{total decrease in } lp() \text{ is also at most } t\]
Lemma. Suppose there is a (possibly empty) path of failure links from a node v to a node numbered by P_i. Then, P_i must occur in T ending at position c (the current character) whenever v is reached during $ACSearch$.

Lemma. Suppose a node v is reached by $ACSearch$. Then, P_i occurs in T ending at position c only if v is numbered i or there is a directed path of failure links from v to the node numbered i.

FullACSearch:

$l \leftarrow 1; \; c \leftarrow 1; \; w \leftarrow root(K)$

repeat

while there exists an edge (w,w') labeled $T[c]$ do

if w' is numbered by P_i or there is a path of failure links from w' to a node numbered P_i then report occurrence of P_i starting at position l of T

$w \leftarrow w'; \; c \leftarrow c + 1$

$w \leftarrow n_w; \; l \leftarrow c - lp(w)$

until $c > n$

A full implementation of Aho-Corasick requires *output links*.

For each v in K, the *output link* for v points to the numbered node that is reachable from v through the fewest failure links. All output links can be computed in $O(n)$ time.

Theorem. After $O(n)$-time preprocessing, all occurrences in T of patterns in P can be found in $O(m+k)$ time, where k is the number of occurrences.

Application: Exact matching with wild cards

A *wild card* is a character \varnothing that matches any single character.

Problem. Given a pattern string W containing wild card characters and a text T, find all occurrences of W in T.

Example. $b\varnothing b\varnothing a\varnothing$ appears twice in $baabcabcabb$
Exact matching with wild cards:
1. Let C be a vector of length $|T|$, set to all 0’s
2. Let $P = \{P_1, P_2, \ldots, P_k\}$ be the multi-set of all maximal substrings of W that do not contain any wild cards. Let l_1, l_2, \ldots, l_k be the starting positions in P of these substrings.
3. Use Aho-Corasick to find all starting positions in T of each P_i in P. For each staring position j of P_i, increment $C[j - l_i + 1]$ by one.
4. Scan C: There is an occurrence of W in T starting at $T[p]$ if and only if $C[p] = k$.

Theorem. All matches can be found in $O(n + km)$ time. If k is bounded, all matches are found in $O(n+m)$ time.

Comments

- No solution with run time $O(n + m)$, independent of k, is known.
- There are cases where wild cards also appear in T.