WEIGHTED MULTIDIMENSIONAL SEARCH AND ITS APPLICATION TO CONVEX OPTIMIZATION

RICA AGARWALA* AND DAVID FERNÁNDEZ-BACA†

Abstract. We present a weighted version of Megiddo's multidimensional search technique and use it to obtain faster algorithms for certain convex optimization problems in \mathbb{R}^d, for fixed d. This leads to speed-ups by a factor of $\log^d n$ for applications such as solving the Lagrangian duals of matroidal knapsack problems and of constrained optimum subgraph problems on graphs of bounded tree-width.

Key words. Computational geometry, convex optimization, Lagrangian relaxation, multidimensional search.

AMS subject classifications. 52B12, 52B30, 52B55, 68P10, 68Q25, 68U06.

1. Introduction. This paper has three main parts. In the first (Section 2) we present a weighted version of the multidimensional search technique of Megiddo [27, 17, 10]. Part two (Section 3) discusses the application of our result to a class of convex optimization problems in fixed dimension which were studied earlier by Cohen and Megiddo [14, 15] and, in a different context, by Aneja and Kabadi [4]. In rough terms, the results in [14, 15, 4] can be summarized as follows. Suppose that g is a concave function whose domain Q is a convex subset of \mathbb{R}^d and that g is computable in $O(T)$ time by an algorithm A that only performs additions, multiplications by constants, copies, and comparisons on intermediate values that depend on the input numbers. Then, g can be maximized in $O(T^{d+1})$ time. Cohen and Megiddo go on to show that substantial speed-ups are possible by exploiting whatever parallelism is inherent to algorithm A. Thus, if A carries out D parallel steps, each of which does at most M comparisons, the running time will be $O(D \log^d M^d T)$. By applying weighted multidimensional search and a generalization of Cole's circuit simulation technique [16] we are able to reduce this to $O(D^d + \log^d M T)$ in some cases.

Lagrangian relaxation is a source of several problems that fall into the framework described above [4]. This widely-used approach is based on the observation that many hard optimization problems are actually easy problems that are complicated by a relatively small set of side constraints. By "pricing out" the bad side constraints into the objective function, one obtains a simpler convex optimization problem whose optimum solution provides good bounds on the optimum value of the original problem. The third part of this paper (Section 4) explains the application of our results to Lagrangian relaxation problems where the number of bad constraints is fixed. We give two examples of problems where the methods described in Section 3 give faster algorithms than those of [4, 14]: solving the Lagrangian duals of matroidal knapsack problems [11] and of certain constrained optimum subgraph problems on graphs of bounded tree-width.

An earlier version of this paper appears in [1].

* Department of Computer Science, Iowa State University, Ames, IA 50011. Supported in part by a College of Liberal Arts and Sciences Research Assistantship, Iowa State University. Current address: DIMACS (The Center for Discrete Mathematics and Theoretical Computer Science), Rutgers University, Piscataway, NJ 08855 (agarwala@dimacs.rutgers.edu).
† Department of Computer Science, Iowa State University, Ames, IA 50011 (fernandez@cs.iastate.edu). Supported in part by the National Science Foundation under grants CCR-8909026 and CCR-9211262. This author's work was conducted in part at DIMACS, Rutgers University.
2. Weighted multidimensional search. Let us first introduce some notation. Suppose $\Lambda \subseteq \mathbb{R}^d$ is convex and that $h : \mathbb{R}^d \to \mathbb{R}$ is an affine function. Define $\text{sign}_\Lambda(h)$ as

$$\text{sign}_\Lambda(h) = \begin{cases}
0 & \text{if } h(\lambda) = 0 \text{ for some } \lambda \in \Lambda \\
+1 & \text{if } h(\lambda) > 0 \text{ for all } \lambda \in \Lambda \\
-1 & \text{if } h(\lambda) < 0 \text{ for all } \lambda \in \Lambda
\end{cases}$$

We will write sign for sign_Λ when no confusion can arise. A function h is resolved if $\text{sign}_\Lambda(h)$ has been computed. Obviously, if $h(\lambda) = a_0$, $\text{sign}(h)$ can be immediately determined from the sign of a_0.

Suppose we have a set \mathcal{H} of d-dimensional affine functions and an oracle \mathcal{B}^d that can compute $\text{sign}_\Lambda(h)$ for any $h \in \mathcal{H}$. The problem is to resolve every $h \in \mathcal{H}$ using as few oracle calls as possible. The following result is proved in [27, 17, 10].

Theorem 2.1. For each fixed $d \geq 0$ there exist positive constants $\beta(d)$ and $\alpha(d)$, $\alpha(d) \leq 1/2$, and an algorithm SEARCH such that, given a set \mathcal{H} of affine functions, SEARCH resolves every $h \in \mathcal{H}' \subseteq \mathcal{H}$, where $|\mathcal{H}'| \geq \alpha(d) \cdot |\mathcal{H}|$, by making at most $\beta(d)$ calls to \mathcal{B}^d. Furthermore, the work done by SEARCH in addition to the oracle calls is $O(|\mathcal{H}|)$.

(If reality, the above references have proofs of this result for the case where Λ is a single point.) By repeatedly applying algorithm SEARCH we can resolve all functions in \mathcal{H} with $O(\log |\mathcal{H}|)$ oracle calls. In this section, we shall prove a weighted version of Theorem 2.1. Let S be a set on which a weight function $w : S \to \mathbb{R}^+$ has been defined. For $S' \subseteq S$ we write $w(S')$ to denote $\sum_{s \in S'} w(s)$. We have the following result.

Theorem 2.2. For each $d \geq 0$, there exist constants $\beta(d)$ and $\alpha(d)$, $\alpha \leq 1/2$ and an algorithm WEIGHTED-SEARCH with the following property. Given a set \mathcal{H} of affine functions and a weight function $w : \mathcal{H} \to \mathbb{R}^+$, WEIGHTED-SEARCH either finds a subset $\mathcal{H}' \subseteq \mathcal{H}$ with $w(\mathcal{H}') \geq \alpha(d) \cdot w(\mathcal{H})$ and resolves every $h \in \mathcal{H}'$ by making at most $\beta(d)$ calls to \mathcal{B}^d or, it returns an affine function h such that $\text{sign}_\Lambda(h) = 0$. Furthermore, the work done by WEIGHTED-SEARCH in addition to the oracle calls is $O(|\mathcal{H}|)$.

The proof of this theorem will require some preliminary results, which are discussed next.

2.1. Preliminaries. Procedure WEIGHTED-SEARCH uses two simple algorithms. The first is MATCH, which given two sets A and B, attempts to match disjoint subsets of B with elements of A in a “greedy” manner.

Algorithm MATCH.

Input: Sets $A = \{a_1, \ldots, a_{|A|}\}$ and $B = \{b_1, \ldots, b_{|B|}\}$ and a weight function $w : A \cup B \to \mathbb{R}^+$.

Output: Either FAILURE or disjoint sets $S_1, \ldots, S_{|A|}$ such that, for each i, $S_i = \{a_i\} \cup D_i$ where $D_i \subseteq B$ and $w(D_i) \geq w(a_i)$.

begin

$\ j := 1$

for $i = 1$ to $|A|$ do begin

$\ D_i := \emptyset$

while $w(D_i) < w(a_i)$ do begin

if $j > |B|$ then return FAILURE

$\ D_i := D_i \cup b_j$

end

end

\[j \leftarrow j + 1 \]
\[S_i \leftarrow \{a_i\} \cup D_i \]
end
return \(S_1, \ldots, S_{|A|} \)
end

The running time of this algorithm is clearly \(O(|B|) \). We shall say that MATCH succeed\s if it does not return \textsc{failure}. If MATCH succeeds, then the solution returned obviously satisfies its output conditions. The next lemma gives one scenario in which MATCH always succeeds.

Lemma 2.3. If \(\min_{x \in A} w(x) \geq \max_{y \in B} w(y) \) and \(w(B) \geq 2w(A) \), then MATCH succeeds. Furthermore, each set \(S_i = \{a_i\} \cup D_i \) returned by MATCH satisfies \(w(D_i) < 2w(a_i) \).

Proof. (By contradiction.) Suppose the conditions of the lemma hold and that MATCH returns \textsc{failure}. Then, there exists a \(k, 1 \leq k \leq |A| \), such that, at the \(k \)th iteration of the \textbf{for} loop, MATCH runs out of elements of \(B \) to match up with \(a_k \); i.e., \(w(D_k) < w(a_k) \) and \(B = \bigcup_{i=1}^k D_i \), where \(D_1, \ldots, D_k \) are the subsets of \(B \) constructed by MATCH up to this point. Thus, \(\sum_{j=1}^k w(D_j) = w(B) \). For \(j = 1, \ldots, k \), let \(D_j = \{d_{j1}, d_{j2}, \ldots, d_{jk}\} \). By construction, for \(1 \leq j \leq k-1 \), \(w(D_j) - w(d_{jj}) < w(a_j) \). Thus, for \(1 \leq j \leq k-1 \), \(w(D_j) < w(a_j) + w(d_{jj}) \leq 2w(a_j) \), as \(\min_{x \in A} w(x) \geq \max_{y \in B} w(y) \). Together with the above-mentioned fact that \(w(D_k) < w(a_k) \), we get that

\[w(B) = \sum_{j=1}^k w(D_j) < \sum_{j=1}^k 2w(a_j) \leq 2w(A), \]

a contradiction. Therefore, MATCH succeeds, and for each set \(S_i = \{a_i\} \cup D_i \), \(w(D_i) < 2w(a_i) \). \(\Box \)

MATCH is invoked by the following algorithm.

Algorithm PAIRING.

Input: Sets \(A, B \), a weight function \(w : A \cup B \rightarrow \mathbb{R}^+ \), and a number \(m \) such that \(W^2 / 2 \geq w(B) \geq w(A) \geq (W^2 - m) \), where \(W = w(A \cup B) + m \)

Output: \(k \geq 0 \) disjoint sets \(S_1, \ldots, S_k \), and an element \(e \) satisfying the following conditions:

1. Each \(S_i \) has the form \(\{c_i\} \cup D_i \), where \(e \neq c_i \), and either
 1. for all \(i \), \(e, c_i \in A \) and \(D_i \subseteq B \), or
 2. for all \(i \), \(e, c_i \in B \) and \(D_i \subseteq A \).
2. \(\sum_{i=1}^k w(c_i) + w(e) + m \geq W/6 \).

Note: In order to break ties between items with equal weights, we assume an arbitrary but fixed ordering among the elements in \(A \) and in \(B \). Given any two elements \(x \) and \(y \), where either both are in \(A \) or both are in \(B \), we will say that \(x \) precedes \(y \) if \((w(x), x) \) is lexicographically smaller than \((w(y), y)\).

Step 1. Find \(a \in A \) and \(b \in B \) such that \(w(A_1) \leq w(A_3) / 3 \) and \(w(A_1 \cup \{a\}) \leq w(B_3) / 3 \), where \(A_1 = \{x \in A : x \text{ precedes } a\} \) and \(B_1 = \{x \in B : x \text{ precedes } b\} \). Let \(A_2 = A - A_1 \) and \(B_2 = B - B_1 \).

Step 2. If \(w(a) \geq w(b) \), do the following steps.

Step 2(a). If \(w(a) + m \geq W/6 \), then return \(k = 0 \) and \(e = a \).

Step 2(b). Call MATCH with inputs \(A_1 \) and \(B_2 \). Let \(S_1, \ldots, S_{|A_1|} \) be the sets returned by this call. Return \(S_1, \ldots, S_{|A_1|} \), and \(e = a \).
Step 3. If \(w(a) < w(b) \), do the following steps.

Step 3(a). If \(w(b) + m \geq W/6 \), then return \(k = 0 \) and \(e = b \).

Step 3(b). Call MATCH with inputs \(B_1 \) and \(A_2 \). Let \(S_1, \ldots, S_{|B_1|} \) be the sets returned by this call. Return \(S_1, \ldots, S_{|B_1|} \) and \(e = b \).

Lemma 2.4. Pairing correctly computes output satisfying conditions (P1)-(P3).

Proof. If the output is returned in Step 2(a) or Step 3(a), the conditions are trivially satisfied. We now consider Step 2(b); the analysis for Step 3(b) is similar. By construction, \(\min_{x \in A_1} w(x) \geq \max_{y \in B_2} w(y) \) and \(w(B_2) \geq 2w(A)/3 \geq 2w(A_1) \). Since the conditions of Lemma 2.3 are satisfied, MATCH succeeds and conditions (P1) and (P2) are satisfied. Since, MATCH works correctly, we have \(\sum_{i=1}^{|A_1|} w(c_i) = w(A_1) \). Therefore, \(\sum_{i=1}^k w(c_i) + w(e) + m = w(A_1) + w(a) + m \). As \(w(A_1) + w(a) \geq w(A)/3 \),

\[
\sum_{i=1}^k w(c_i) + w(e) + m \geq w(A)/3 + m \geq w(A)/3 + m/3
\]

Since \(w(A) + m \geq W/2 \), we obtain

\[
\sum_{i=1}^k w(c_i) + w(e) + m \geq W/6
\]
as desired. \(\square \)

Pairing can be implemented to run in \(O(n) \) time, where \(n = |A| + |B| \). Step 1 takes \(O(n) \) time as elements \(a \) and \(b \) can be found by repeated median finding [12]. Steps 2 and 3 also take linear time, as MATCH takes linear time.

2.2. The search algorithm. We shall now prove Theorem 2.2. The implementation of WEIGHTED-SEARCH that we propose is an extension of Megiddo [27] and Dyer’s [17] algorithms for unweighted multidimensional search (see Theorem 2.1).

Suppose \(H = \{ h_1, \ldots, h_n \} \), where \(h_i(\lambda) = a_i^T \lambda + d_i \). If \(a_i = 0 \), \(\text{sign}(h_i) \) is simply the sign of \(d_i \), and no oracle calls are needed. Thus, the presence of \(h_i \)’s with \(a_i = 0 \) can only help. We shall henceforth assume that \(a_i \neq 0 \), for \(i = 1, \ldots, n \). In this case, each affine function \(h_i \) corresponds to a hyperplane \(H_i \in \mathbb{R}^d \) where \(H_i = \{ \lambda : h_i(\lambda) = 0 \} \). Computing \(\text{sign}(h_i) \) is thus equivalent to determining whether \(H_i \) intersects \(\Lambda \) and, if not, which side of \(H_i \) contains \(\Lambda \). We shall find it convenient to deal interchangeably with hyperplanes and affine functions and to extend the weight function \(w \) to these hyperplanes by making \(w(H_i) = w(h_i) \).

The numbers \(\beta(d) \) and \(\alpha(d) \) are derived recursively with respect to the dimension. For \(d = 1 \), the hyperplanes are \(n \) real numbers \(\lambda_1, \ldots, \lambda_n \). In this case, WEIGHTED-SEARCH finds the weighted median \(\lambda_m \), inquires about its position relative to \(\lambda^* \), and resolves either \(\{ \lambda_i : \lambda_i \leq \lambda_m \} \) or \(\{ \lambda_i : \lambda_i \geq \lambda_m \} \). Thus, \(\beta(1) = 1 \) and \(\alpha(1) = 1/2 \). For \(d \geq 2 \) we proceed as follows.

Form a set \(H_{\infty} = \{ H_1 : a_{2} = 0 \} \). Each \(H_i \in H - H_{\infty} \) intersects the \(\lambda_1 - \lambda_2 \) plane (i.e., the plane where \(\lambda_i = 0 \) for \(i \notin \{1, 2\} \)) in a straight line \(a_{i1} \lambda_1 + a_{i2} \lambda_2 = b_i \). Since for every scalar \(l \neq 0 \), \(\text{sign}(h(\lambda)) = \text{sign}(l) \cdot \text{sign}(h(\lambda)/l) \), we can rewrite the equations of these hyperplanes so that \(a_{i1} \geq 0 \). Let the slope \(\alpha_i \) of \(H_i \) be the same as that of \(a_{i1} \lambda_1 + a_{i2} \lambda_2 = b_i \) with respect to \(\lambda_2 = 0 \); i.e., let \(\alpha_i = (-a_{i1}/a_{i2}) \). Let \(\alpha^* \) be the weighted median of the set \(\{\alpha_i\} \) where the weight of \(\alpha_i \) is \(w(H_i) \). Now we make the slopes of roughly weighted half of the hyperplanes nonnegative and weighted half
nonpositive by using the change of variables \(\lambda_2 = \lambda'_2 + \alpha^* \lambda_1 \) and \(a_{i1} = a'_{i1} - \alpha^* a_{i2} \). This change of variables is only done to simplify the exposition and, indeed, needs to be reversed before making an oracle call. For convenience, we now drop the primes on \(\lambda'_2 \) and \(a'_{i1} \). Recalculate the slopes of the hyperplanes after making this change in variables. All hyperplanes that originally had a slope of \(\alpha^* \) will have 0 slope. Let \(\mathcal{H}_0 = \{ H_i : \alpha_i = 0 \} \), \(\mathcal{H}_- = \{ H_i : \alpha_i < 0 \} \), and \(\mathcal{H}_+ = \{ H_i : \alpha_i > 0 \} \).

Let \(m = w(\mathcal{H}_\infty) + w(\mathcal{H}_0) \) and \(W = w(\mathcal{H}) \). Since 0 is our new weighted median slope, \(w(\mathcal{H}_-) \leq (W - w(\mathcal{H}_\infty))/2 \leq W/2 \) and \(w(\mathcal{H}_-) + w(\mathcal{H}_0) \geq (W - w(\mathcal{H}_\infty))/2 \). Therefore, \(W/2 \geq w(\mathcal{H}_-) \geq W/2 - w(\mathcal{H}_\infty)/2 - w(\mathcal{H}_0) \geq W/2 - m \). Similarly, \(W/2 \geq w(\mathcal{H}_+) \geq W/2 - m \). Thus, sets \(\mathcal{H}_-, \mathcal{H}_+ \) and the number \(m \) satisfy the preconditions of \textsc{Pairing} — assuming, without loss of generality, that \(w(\mathcal{H}_-) \leq w(\mathcal{H}_+) \).

\textsc{Weighted-Search} calls \textsc{Pairing}(\mathcal{H}_-, \mathcal{H}_+, m). Let \(S_1, \ldots, S_i, e \) be the sets and the element returned, where \(S_i = \{ c_i \} \cup D_i \). By output condition (P3) of \textsc{Pairing},

\[
\sum_{i=1}^{i} w(c_i) + w(e) + m \geq W/6
\]

Next, we resolve the hyperplane associated with \(e \), denoted by \(H_e \), by calling the oracle directly. If \(H_e \) intersects \(\Lambda \), we return \(H_e \); otherwise, for the hyperplanes corresponding to elements in \(S_1, \ldots, S_i \), we do the following.

Suppose that for each set \(S_i = \{ c_i \} \cup D_i \), \(c_i \) corresponds to a hyperplane \(H_i \in \mathcal{H}_- \) and that \(D_i \), has a corresponding set of hyperplanes \(\{ H_{i1}, H_{i2}, \ldots, H_{iq_i} \} \subseteq \mathcal{H}_+ \). (The analysis for the case where \(c_i \) is associated with a hyperplane in \(\mathcal{H}_+ \) completed analogously.) For each \(i \), form pairs \((H_i, H_{ij}), (H_i, H_{ij}), \ldots, (H_i, H_{ij}) \). By Lemma 2.3, for each \(i \) and \(j \),

\[
w(H_{ij}) \leq w(H_i)
\]

Consider a typical pair \((H_i, H_{ij}) \). Since \(H_i \) and \(H_{ij} \) have strictly negative and strictly positive slopes, respectively, their intersection is a \((d - 1)\)-dimensional hyperplane. Through this intersection, we can draw hyperplanes \(H_{ij}^{(1)} \) and \(H_{ij}^{(2)} \) whose slopes are +\(\infty \) and 0 respectively. Mathematically,

\[
H_{ij}^{(1)} : (a_{ij2}a_{ij} - a_{i1}a_{ij2})\lambda_1 = (a_{ij2}b_{ij} - a_{ij2}b_i) - \sum_{r=3}^{d} (a_{ij2}a_{ijr} - a_{ij2}a_{ir})\lambda_r
\]

\[
H_{ij}^{(2)} : (a_{ij2}a_{ij} - a_{i1}a_{ij2})\lambda_2 = (a_{ij2}b_{ij} - a_{ij2}b_i) - \sum_{r=3}^{d} (a_{ij1}a_{ir} - a_{ij1}a_{ir})\lambda_r
\]

Note that \(H_{ij}^{(1)} \) and \(H_{ij}^{(2)} \) are \((d - 1)\)-dimensional hyperplanes. Now, assign a weight of \(\min(w(H_i), w(H_{ij})) \) to each of \(H_{ij}^{(1)} \) and \(H_{ij}^{(2)} \). From equation (2), we get that \(\min(w(H_i), w(H_{ij})) = w(H_{ij}) \). This along with condition (P2) of \textsc{Pairing} gives us

\[
\sum_{r=1}^{q_i} w(H_{ir})^{(1)} + \sum_{r=1}^{q_i} w(H_{ir})^{(2)} = \sum_{r=1}^{q_i} w(H_{ir}) \geq w(c_i) = w(H_i)
\]

Recursively apply \textsc{Weighted-Search} to the set of \((d - 1)\)-dimensional hyperplanes \(\{ H_{ij} \} \cup \mathcal{H}_\infty \). This requires \(\beta(d - 1) \) oracle calls. If an oracle call finds a hyperplane which intersects \(\Lambda \), we return that hyperplane. Otherwise, let \(W_\infty \) and \(W_1 \) denote
the weights of the hyperplanes resolved from sets \mathcal{H}_0 and $\{H^{(1)}_{ij}\}$, respectively, and let $w(\{H^{(1)}_{ij}\}) = \sum_{i=1}^{t} \sum_{r=1}^{d_i} w(H_{ir})$. Then,

$$W_\infty + W_1 \geq \alpha(d - 1)(w(\mathcal{H}_0) + w(\{H^{(1)}_{ij}\})).$$

Let $\mathcal{H}^{(2)}$ be the set of hyperplanes in $\{H^{(2)}_{ij}\}$ for which the corresponding $H^{(1)}_{ij}$'s has been resolved in the previous step. Recursively apply Weighted-Search to the set of $(d - 1)$-dimensional hyperplanes in $\mathcal{H}^{(2)} \cup \mathcal{H}_0$. This requires at most $\beta(d - 1)$ oracle calls. As before, if we find a hyperplane which intersects Λ, we return that hyperplane; otherwise, we proceed as follows. Letting W_0 and W_{12} denote the weights of the hyperplanes resolved from sets \mathcal{H}_0 and $\mathcal{H}^{(2)}$, respectively, we have

$$W_0 + W_{12} \geq \alpha(d - 1)(w(\mathcal{H}_0) + W_1).$$

To summarize the algorithm up to this point, observe that we have either found a hyperplane which intersects Λ or, from the original set \mathcal{H}, we have resolved an element e of weight $w(e)$, a subset of weight W_∞ of the planes in \mathcal{H}_∞, and a subset of weight W_0 of the planes in \mathcal{H}_0. In addition to this, we have resolved a subset of weight W_1 of the hyperplanes in set $\{H^{(1)}_{ij}\}$, and a subset of weight W_{12} of the hyperplanes in set $\mathcal{H}^{(2)}$. For each hyperplane contributing to W_{12}, we have also resolved its pair in the set $\{H^{(1)}_{ij}\}$. However, W_1 and W_{12} represent the total weights of sets of auxiliary hyperplanes, rather than elements of \mathcal{H}. We shall now show that by resolving such auxiliary hyperplanes, we are guaranteeing the resolution of sufficiently many hyperplanes from $(\mathcal{H}_- \cup \mathcal{H}_+) - \{H_e\}$.

Lemma 2.5. Let W_a be the total weight of the hyperplanes resolved in $(\mathcal{H}_- \cup \mathcal{H}_+) - \{H_e\}$. Then, $W_a \geq W_{12}/2$.

Proof. Consider a particular set $\mathcal{S}_i = \{H_i\} \cup \{H^{(1)}_{i1}, H^{(1)}_{i2}, \ldots, H^{(1)}_{iL_i}\}$. The auxiliary hyperplanes formed by the intersection of hyperplanes in \mathcal{S}_i are

$$(H^{(1)}_{i1}, H^{(1)}_{i1}, \ldots, H^{(1)}_{iL_i}).$$

Suppose $H^{(2)}_{i1}, H^{(2)}_{i2}, \ldots, H^{(2)}_{iL_i}$ were resolved in the second recursive call. Then these hyperplanes contributed to W_{12}. Hence, the contribution, C_i, of the auxiliary hyperplanes resulting from \mathcal{S}_i to W_{12} is $C_i = \sum_{j=1}^{p_i} w(H^{(2)}_{ij})$ and W_{12} can be written as

$$W_{12} = \sum_{i=1}^{t} C_i.$$

For each $H^{(2)}_{ij}$ that gets resolved, its corresponding $H^{(1)}_{ij}$ has already been resolved in the first recursive call. We now rely on an observation of Megiddo [27], who noted that if we know the position of Λ relative to both $H^{(1)}_{ij}$ and $H^{(2)}_{ij}$, we can determine the position of Λ relative to at least one of H_i and H_{ij}. Let R_i be the sum of the weights of the hyperplanes resolved from \mathcal{S}_i. Since $\bigcup_{i=1}^{t} \mathcal{S}_i \subseteq (\mathcal{H}_- \cup \mathcal{H}_+) - \{H_e\}$ and the \mathcal{S}_i's are disjoint,

$$W_a \geq \sum_{i=1}^{t} R_i$$

We have two cases to consider:
Case I: In each pair \(H_{ij} \) is resolved. Then, due to equation (3) we have
\[
R_i = \sum_{j=1}^{p} w(H_{ij}) = \sum_{j=1}^{p} w(H_{ij}^{(2)}) = C_i
\]

Case II: \(H_i \) is resolved in at least one pair. Then, equation (3) along with condition (P2) of PAIRING implies that
\[
R_i \geq w(H_i) = w(c_i) > \sum_{j=1}^{l} w(H_{ij})/2 \geq \sum_{j=1}^{p} w(H_{ij}^{(2)})/2 = C_i/2
\]

Therefore, in either case \(R_i \geq C_i/2 \). This along with equations (6) and (7) gives us the following:
\[
W_a \geq \sum_{i=1}^{l} R_i \geq \sum_{i=1}^{l} C_i/2 = W_{12}/2
\]

Therefore, \(W_a \geq W_{12}/2 \).

Let \(W_T \) be the total weight of the hyperplanes from \(\mathcal{H} \) that are resolved by our algorithm; i.e., \(W_T = w(e) + W_{\infty} + W_0 + W_a \). Using Lemmas 2.4 and 2.5, and equations (3)-(5), we have:
\[
W_T \geq w(e) + W_{\infty} + W_0 + W_{12}/2 \\
\geq w(e) + W_{\infty} + \alpha(d-1) \cdot (w(H_0) + W_1)/2 \\
\geq w(e) + \alpha(d-1) \cdot (w(H_0) + \alpha(d-1) \cdot (w(H_{\infty}) + w(H_{ij}^{(1)}))/2 \\
\geq \alpha(d-1)^2 \cdot \left(w(e) + w(H_0) + w(H_{\infty}) + \sum_{i=1}^{l} w(c_i) \right)/2 \\
\geq \alpha(d-1)^2 \cdot W/12
\]

From the preceding discussion, we conclude that the number of oracle calls satisfies \(\beta(d) = 2\beta(d-1)+1 \), with \(\beta(1) = 1 \), and that the fraction of the total weight satisfies \(\alpha(d) \geq \alpha(d-1)^2/12 \), with \(\alpha(1) = 1/2 \). Hence, \(\beta(d) = 2^d - 1 \) and \(\alpha(d) = 12/2^{2^{d-1}} \).

The same arguments as in [17] can be used to show that the total work done by WEIGHTED-SEARCH is \(O(n) \). We omit the details.

2.3. Improving the efficiency of the search. Following Dyer [17], the efficiency of a search scheme is the ratio \(e = \alpha(d)/\beta(d) \). As for unweighted search, the efficiency of a weighted search scheme will affect the running time of the algorithms that use the scheme as a subroutine. The search scheme we have just presented has \(e \) that is doubly exponentially small in \(d \). Borrowing ideas from [17], we shall sketch how to make the efficiency singly exponentially small.

Let us write \(S(d, \beta, \alpha) \) to denote a weighted search scheme that, given a set of weighted affine functions in \(\mathbb{R}^d \) of total weight \(W \), resolves a fraction of total weight \(\alpha \cdot W \) using \(\beta \) oracle calls. Thus, the algorithm that we have developed can be denoted by \(S(d, 2^d - 1, 12/2^{2^{d-1}}) \). Suppose that we have a \(S(d-1, \beta'(d-1), \alpha(d-1)) \) scheme \(\hat{S}_{d-1} \). To obtain a search procedure for \(\mathbb{R}^d \), proceed as follows. First, construct a \(S(d-1, \beta', \alpha') \) procedure with
\[
\alpha' = 1 - (1 - \alpha(d-1))^r \quad \text{and} \quad \beta' = r \cdot \beta(d-1).
\]
by carrying out r iterations, each of which consists of applying S_{d-1} and removing
the hyperplanes that are resolved. Next, use $S(d-1, \beta', \alpha')$ and the pairing scheme
described earlier to obtain a procedure $S(d, \beta'', \alpha'')$ where

$$\alpha'' = [1 - (1 - \alpha(d - 1))^2]^2 / 12, \quad \text{and} \quad \beta'' = 2 \cdot r \cdot \beta(d - 1) + 1.$$

Applying this procedure l times gives us a procedure $S(d, \beta(d), \alpha(d))$ that solves d-
dimensional hyperplanes with

$$\beta(d) = l \cdot \beta'' = l(2r \cdot \beta(d - 1) + 1), \quad \text{and} \quad \alpha(d) = 1 - (1 - \alpha'')^l = 1 - \left\{ 1 - \frac{1}{12} [1 - (1 - \alpha(d - 1))^2]^2 \right\}^l.$$

We can use this framework to obtain a scheme $S(d, \beta(d), \alpha(d))$ where $\alpha(d) \geq 1/12$ for
all d. For $d = 1$, we can easily obtain a scheme $S(1, 1, 1/2)$. Suppose $\alpha(d - 1) \geq 1/12$.
If we choose $l = 2$ and $r = 15$, we get

$$\alpha(d) = 1 - \left\{ 1 - \frac{1}{12} [1 - (1 - 1/12)^{15/2}]^2 \right\} \geq 1/12,$$

as desired. Now,

$$\beta(d) = 2 \cdot (2 \cdot 15 \cdot \beta(d - 1) + 1) \leq 2(60^{d-1}),$$

and we have a procedure $S(d, 2(60^{d-1}), 1/12)$ whose efficiency is singly exponentially
small.

3. Convex optimization in fixed dimension. An algorithm is piecewise affine
if the only operations it performs on intermediate values that depend on the input
numbers are additions, multiplications by constants, copies, and comparisons [14, 15].
Several well-known algorithms fall into this category, including many network optimization
algorithms [13, 33]. Suppose $\mathcal{Q} \subseteq \mathbb{R}^d$ is a (possibly empty) convex set
defined by a set of at most l linear inequalities, where l is some fixed integer. Let $g : \mathcal{Q} \to \mathbb{R}$ be a concave function. Our goal is to compute

$$g^* = \max \{ g(\lambda) : \lambda \in \mathcal{Q} \}. \quad (8)$$

or, if $\mathcal{Q} = \emptyset$, to return a message that this problem is infeasible. Cohen and Megiddo
[14, 15] showed that, if g is computable by a piecewise affine algorithm that runs
in time T and makes D sets of at most M comparisons, then problem (8) can be
solved in $O(D \log M)^{d^2} T$ time. Closely related results were obtained by Norton,
Plotkin, and Tardos [29] and Aneja and Kabadi [4]. Toledo has extended this work to
problems involving piecewise polynomial functions [34]. The main result of this section
is to show that weighted multidimensional search in conjunction with Cole’s circuit
simulation technique [16] can sometimes be used to solve (8) in $O(D^d + \log^d M) T$ time.

To streamline the presentation, for the most part we shall omit any mention of
constants that depend on d. The magnitude of these values is discussed in Section
3.3.
3.1. The basic scheme. We now review the solution scheme of Megiddo and Cohen and Aneja and Kabadi [14, 4] as it forms the basis for our algorithm. Our presentation is somewhat simpler, among other reasons because it avoids the notion of “minimal weak approximation” used in [14]. We shall assume that problem (8) is bounded. This is done without loss of generality, since unbounded problems can be handled by Seidel’s technique of adding “constraints at infinity” [32]. Note also that if \(g \) is computable by a piecewise affine algorithm, it is the lower envelope of a finite set of linear functions [14]. We say that a linear function \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) is active at \(\lambda^0 \in \mathcal{Q} \) if \(g(\lambda^0) = f(\lambda^0) \) and \(g(\lambda) \leq f(\lambda) \) for all \(\lambda \in \mathcal{Q} \) and we shall write \(\Lambda \) to denote the set of maximizers of \(g \).

Let us refer to the algorithm that solves a \(d \)-dimensional problem of the form (8) as algorithm \(\mathcal{C}^d \). Let \(H \) be a hyperplane in \(\mathbb{R}^d \), and let \(\gamma^*_H \) denote the maximum of \(g \) on \(H \); i.e.,

\[
\gamma^*_H = \max \{ g(\lambda) : \lambda \in H \cap \mathcal{Q} \}
\]

Suppose we have an oracle \(\mathcal{B}^d \) that, as in Section 2, returns \(\text{sign}_A(h) \) for any given affine function \(h \). Moreover, if \(h \) defines a hyperplane \(H \), \(\mathcal{B}^d \) returns \(\gamma^*_H \), assuming \(H \cap \mathcal{Q} \neq \emptyset \).

Obviously, \(\mathcal{A} \) can play the role of \(\mathcal{C}^0 \). For \(d \geq 1 \), \(\mathcal{C}^d \) proceeds as follows. First, it determines whether \(\mathcal{Q} \) is empty and, if so, returns a message saying that (8) is infeasible. Since \(\mathcal{Q} \) is defined by a fixed number of linear inequalities, this takes \(O(1) \) time. If \(\mathcal{Q} \neq \emptyset \), \(\mathcal{C}^d \) uses Megiddo’s algorithm simulation technique [25, 26] to do one of two things. The first option is to find a hyperplane \(H \) defined by \(h(\lambda) = 0 \), such that \(\text{sign}_A(h) = 0 \). Then, clearly \(\gamma^* = \gamma^*_H \). The second option is to find a linear function \(f \) and a set of linear inequalities \(\mathcal{L} \) defining a non-empty convex set \(\mathcal{Q}^* \subseteq \mathcal{Q} \) such that

\[
\begin{align*}
(C1) & \quad \mathcal{Q}^* \subseteq \Lambda \\
(C2) & \quad f \text{ is active at every } \lambda \in \mathcal{Q}^*.
\end{align*}
\]

In this case, solving (8) reduces to solving the linear programming problem

\[
\max \{ f(\lambda) : \lambda \in \mathcal{Q}^* \},
\]

which can be done in time linear in \(\mathcal{L} \), since \(d \) is fixed [27]. \(\mathcal{C}^d \) relies on the observation that, because \(\mathcal{A} \) is piecewise affine and its inputs are linear functions of \(\lambda \), all the intermediate values of its real variables can be represented implicitly as linear forms in \(\lambda \). Using this representation, a single computation path of \(\mathcal{A} \), may correspond to the evaluation of \(g(\lambda) \) for a set of distinct \(\lambda \)-values.

Suppose that for \(s \leq r \), we know how to find a set \(\mathcal{Q}' \subseteq \mathbb{R}^d \) defined by a set of linear inequalities \(\mathcal{L} \) such that \(\mathcal{Q}' \cap \Lambda \neq \emptyset \) and such that the outcomes of the first \(r \) steps of any computation path of \(\mathcal{A} \) for every \(\lambda^* \in \mathcal{Q}' \) are exactly the same (when values are represented implicitly). We wish to find such a set for \(s = r + 1 \). Before proceeding, note that finding \(\mathcal{Q}' \) when \(s = 0 \) is trivial, since we can choose \(\mathcal{Q}' = \mathcal{Q} \).

For \(s = r + 1 \), observe that knowing the outcomes of the first \(r \) steps tells us what the \((r + 1)^{st}\) step of \(\mathcal{A} \) will be; we now need to determine the outcome of this step. If the \((r + 1)^{st}\) step is an addition of two or more numbers, a multiplication by a constant, or an assignment, \(\mathcal{C}^d \) does the corresponding operations with linear forms and proceeds to the next step of \(\mathcal{A} \).

If the \((r + 1)^{st}\) step is a comparison between two variables, \(\mathcal{C}^d \) compares the corresponding linear forms \(f_1(\lambda) \) and \(f_2(\lambda) \) using \(\mathcal{B}^d \) to resolve the function \(h(\lambda) = f_1(\lambda) - f_2(\lambda) \). Suppose \(h(\lambda) = 0 \) defines a hyperplane \(H \). If \(\text{sign}_A(h) = 0 \), then
g^* is the value of g_H returned by the oracle, and \mathcal{C}^d halts. Otherwise, \mathcal{C}^d updates \mathcal{L} by adding the inequality $h(\lambda) > 0$ if $\text{sign}(h) = +1$, or the inequality $h(\lambda) < 0$ if $\text{sign}(h) = -1$. The next step to be simulated from \mathcal{A} will be the action corresponding to $f_1(\lambda) > f_2(\lambda)$ or $f_1(\lambda) < f_2(\lambda)$ depending on whether $\text{sign}(h)$ is $+1$ or -1. If h is a constant function, the oracle’s job is trivial, since the outcome of the comparison is independent of λ and the simulation proceeds accordingly.

If \mathcal{C}^d simulates \mathcal{A} to completion, \mathcal{Q}^d will satisfy condition (C1). Furthermore, the output of \mathcal{A} will be a linear function f satisfying condition (C2). Since \mathcal{A} does $O(T)$ comparisons, $|\mathcal{L}| = O(T)$ and the resulting linear program in d variables can be solved in $O(T)$ time [27]. The total time for algorithm \mathcal{C}^d is therefore $O(T \cdot b(d))$, where $b(d)$ is the running time of \mathcal{B}^d. We now turn our attention to the implementation of \mathcal{B}^d.

Implementing the oracle. Let $h(\lambda) = \sum_{i=1}^{d} a_i \lambda_i + b$ be the function to be resolved. If $a_i = 0$ for $i = 1, \ldots, n$, $\text{sign}(h)$ depends simply on the sign of b. Otherwise, $H = \{ \lambda : h(\lambda) = 0 \}$ is a hyperplane in \mathbb{R}^d. To resolve b, \mathcal{B}^d first determines if $H \cap Q = \emptyset$. If this is so, then, since $\Lambda \subseteq Q$, we simply need to find a point $\lambda(0) \in Q$ and evaluate $\text{sign}_{\Lambda(0)}(h)$. Determining if the intersection of H and Q is non-empty, and finding a point inside Q take $O(1)$ time, since Q is defined by a set of $O(1)$ linear inequalities and l is fixed.

From now on, assume $H \cap Q \neq \emptyset$. Now, if $\Lambda \cap H = \emptyset$, due to concavity of g, the set of all points λ' such that $g(\lambda') > g_H$ is contained in only one side of H. This observation leads to the following result, which is the basis for the implementation of \mathcal{B}^d.

Lemma 3.1. Let $H = \{ \lambda : h(\lambda) = 0 \}$ be a hyperplane in \mathbb{R}^d and for every real number a, let $H(a)$ denote the hyperplane given by $H(a) = \{ \lambda : h(\lambda) = a \}$. Then,

$$\text{sign}_\Lambda(h) = \begin{cases} +1 & \text{if } (\exists \epsilon > 0)[g_{H(\epsilon)} > g_H] \\ -1 & \text{if } (\exists \epsilon > 0)[g_{H(-\epsilon)} > g_H] \\ 0 & \text{otherwise} \end{cases}$$

Furthermore, if $\text{sign}_\Lambda(h) = +1 [\text{sign}_\Lambda(h) = -1]$, then $g_{H(\epsilon)}^* > g_H \ [g_{H(-\epsilon)}^* > g_H]$ for all $\gamma \in (0, \epsilon]$, where $\epsilon > 0$ is sufficiently small.

The Lemma tacitly assumes that $H(\epsilon) \cap Q \neq \emptyset \ [H(-\epsilon) \cap Q \neq \emptyset]$ for some $\epsilon > 0$. If $H(\epsilon) \cap Q = \emptyset \ [H(-\epsilon) \cap Q = \emptyset]$ for every $\epsilon > 0$, we can immediately conclude that $\text{sign}(h) = +1 \ [-1]$. Thus, we shall continue assuming that $H(\epsilon) \cap Q \neq \emptyset$ and $H(-\epsilon) \cap Q \neq \emptyset$ for some $\epsilon > 0$.

Lemma 3.1 implies that we can implement \mathcal{B}^d by computing $g_{H^+}^*$, $g_{H(\epsilon)}^*$, and $g_{H(-\epsilon)}^*$ for sufficiently small $\epsilon > 0$. Computing g_{H}^* is a $(d-1)$-dimensional problem of the same form as that of computing g^*; hence, g_{H}^* can be calculated by recursively calling \mathcal{C}^{d-1}. We can also compute $g_{H(\epsilon)}^*$ using \mathcal{C}^{d-1}, provided \mathcal{C}^{d-1} treats ϵ as a symbolic constant whose only known attribute is being arbitrarily small and positive. (The details of computing $g_{H(-\epsilon)}^*$ are analogous and therefore omitted.) The output $g_{H(\epsilon)}^*(\epsilon)$ of this execution of \mathcal{C}^{d-1} will depend linearly on ϵ, i.e., $g_{H(\epsilon)}^* = g_0 + g_1 \epsilon$. The values of $g_{H(\epsilon)}^*$ and g_{H}^* are compared by computing $y = \text{sign}(g_{H}^* - g_{H(\epsilon)}^*) = \text{sign}(\gamma_0 - g_{H(\epsilon)}^*) = \text{sign}(\gamma_0 - g_{H}^*)$, since ϵ is arbitrarily small. Otherwise, $d = \text{sign}(\gamma_0)$, since ϵ is positive. Of course, \mathcal{C}^{d-1} will itself call \mathcal{B}^{d-1}, which will introduce a perturbation of its own. In order to deal effectively with the various symbolic perturbations, we shall establish a certain ordering among them.

The state of the execution of \mathcal{C}^d is partially described by sequence of currently active procedure calls (i.e., calls that have not yet been completed). Let us follow
one sequence of procedure calls \(C^d \to B^d \to C^{d-1} \to B^{d-1} \to \ldots \to B^{d-r+1} \to C^{d-r} \).

Within this sequence, for \(0 \leq j \leq r-1 \), \(B^{d-j} \to C^{d-j-1} \) corresponds to one of the three calls to \(C^{d-j-1} \) done by \(B^{d-j} \); we refer to this part of the sequence as level \(j \). Each level reduces the dimension of the problem by one. Also, depending on which of the three calls the level corresponds to, the call may or may not introduce a perturbation. If it does, we shall refer to the perturbation as \(e_j \). Let \(J = \{ i_1, \ldots, i_s \} \subseteq I = \{ 0, \ldots, r \} \) consist of all \(j \) such that a perturbation is introduced up to level \(j \). We assume that \(0 \leq i_1 \leq r \) and, for \(0 \leq j \leq s-1 \), \(0 \leq i_j \leq i_{j+1} \leq r \). The set \(J \) indicates which perturbations are “active” at the current stage of the execution of \(C^d \). The problem to be solved at level \(r \) can thus be expressed as:

\[
g^*_r = \max \{ g(\lambda) : \lambda \in \mathcal{Q}(\epsilon_{i_1}, \ldots, \epsilon_{i_s}) \}
\]

where \(\mathcal{Q}(\epsilon_{i_1}, \ldots, \epsilon_{i_s}) \) is a \((d-r)\)-dimensional subset of \(\mathbb{R}^d \), defined by the intersection of \(O(d) \) linear inequalities in \(\lambda \) and \(\epsilon_{i_1}, \ldots, \epsilon_{i_s} \).

Now, suppose \(C^{d-r} \) invokes \(B^{d-r} \) to resolve a hyperplane

\[
H(\epsilon_{i_1}, \ldots, \epsilon_{i_s}) = \{ \lambda : h(\lambda, \epsilon_{i_1}, \ldots, \epsilon_{i_s}) = 0 \}.
\]

For every real number \(a \), let \(H^r(\epsilon_{i_1}, \ldots, \epsilon_{i_s}, a) = \{ \lambda : h(\lambda, \epsilon_{i_1}, \ldots, \epsilon_{i_s}) = a \} \). Then, applying Lemma 3.1, \(B^d \) solves three problems:

\[
g^*_{r+1}(0) = \max \{ g(\lambda) : \lambda \in \mathcal{Q}(\epsilon_{i_1}, \ldots, \epsilon_{i_s}) \cap H^r(\epsilon_{i_1}, \ldots, \epsilon_{i_s}, 0) \}
\]
\[
g^*_{r+1}(\epsilon_{r+1}) = \max \{ g(\lambda) : \lambda \in \mathcal{Q}(\epsilon_{i_1}, \ldots, \epsilon_{i_s}) \cap H^r(\epsilon_{i_1}, \ldots, \epsilon_{i_s}, \epsilon_{r+1}) \}
\]
\[
g^*_{r+1}(-\epsilon_{r+1}) = \max \{ g(\lambda) : \lambda \in \mathcal{Q}(\epsilon_{i_1}, \ldots, \epsilon_{i_s}) \cap H^r(\epsilon_{i_1}, \ldots, \epsilon_{i_s}, -\epsilon_{r+1}) \},
\]

where \(\epsilon_{r+1} > 0 \). By Lemma 3.1, if there exists an \(\epsilon_{r+1} > 0 \) such that \(g^*_{r+1}(\epsilon_{r+1}) > g^*_{r+1}(0) \), then \(g^*_{r+1}(\gamma) > g^*_{r+1} \) for any \(\gamma \in (0, \epsilon_{r+1}) \). Thus, when dealing symbolically with \(\epsilon_{r+1} \), we can assume that it is arbitrarily smaller than any one of \(\epsilon_{i_1}, \ldots, \epsilon_{i_s} \). By the same reasoning, when dealing with perturbations \(\epsilon_{i_1}, \ldots, \epsilon_{i_s} \), we can always act under the assumption that

\[
0 < \epsilon_{i_s} \ll \epsilon_{i_{s-1}} \ll \cdots \ll \epsilon_2 \ll \epsilon_1 \ll 1.
\]

Since \(A \) is piecewise affine, all numbers manipulated at any level of the execution of \(C^d \) are linear forms in the \(\lambda \)'s and the \(\epsilon \)'s. Suppose the execution of \(C^d \) produces a sequence of procedure calls that eventually triggers a comparison between two values. If the values involve \(\lambda \) (and, possibly, some \(\epsilon \)'s), the comparison will be handled by an oracle call. Otherwise, we will be comparing linear forms in the \(\epsilon \)'s. For a correct implementation of \(C^d \), it suffices to deal properly with the second kind of comparison. Suppose the two numbers have the form \(u = u_0 + \sum_{j=1}^{s} u_j \epsilon_j \) and \(v = v_0 + \sum_{j=1}^{s} v_j \epsilon_j \). We must compute \(\operatorname{sign}(t) \), where \(t = t_0 + \sum_{j=1}^{s} t_j \epsilon_j \) and \(t_j = u_j - v_j, \ j = 1, \ldots, s \). Obviously, if \(t_j = 0 \) for \(j = 0, 1, \ldots, s, \) \(\operatorname{sign}(t) = 0 \). Otherwise, there is a smallest subscript \(d, 0 \leq d \leq s \) such that \(|t_d| > 0 \). By (9), \(\epsilon_{i_{s+1}}, \ldots, \epsilon_{i_s} \), can be assumed to be arbitrarily smaller than \(\epsilon_{i_d} \). Thus \(\operatorname{sign}(t) = \operatorname{sign}(t_d) \). We should note that the use of perturbation techniques is common in mathematical programming [13, 31], one example being the lexicographic rule applied in the simplex algorithm. These methods have also found applications in computational geometry [18]. An earlier application of perturbation methods to parametric computing was given by Megiddo [28].

Let \(c(d) \) be the running time of \(C^d \). Since at any level, the number of perturbations that \(C^d \) will have to deal with is \(d \), and \(d \) is fixed, the running time of \(C^d \) will be the
same, asymptotically, whether it deals with a perturbed or an unperturbed problem. As we have seen, \(c(d) = O(T \cdot b(d)) \), where \(b(d) \) is the running time of \(B^d \), and \(b(d) \) is \(O(c(d - 1)) \) because \(B^d \) is implemented via three recursive calls to \(C^{d-1} \). Since \(b(1) = O(T) \), we conclude that \(c(d) = O(T^{d+1}) \).

3.2. Speeding up the search

The main bottleneck in algorithm \(C^d \) is the need to apply oracle \(B^d \) to each affine function generated during the simulation of algorithm \(A \). One way to reduce this problem is to arrange things so that by using a small number of oracle calls we are able to resolve a large number of functions. Megiddo [26] proposed a way to do this in the context of one-dimensional problems, an idea that has subsequently been used in multi-dimensional optimization [14, 29]. Megiddo's approach is to simulate the execution of a parallel algorithm \(A \) for computing \(g(\lambda) \) rather than a sequential one. Suppose \(A \) uses \(M \) processors and carries out at most \(D \) parallel steps. In each step of the simulation, a batch of at most \(M \) comparisons is carried out. In \(C^d \)'s simulation of \(A \), each such comparison has an associated affine function \(h \) which can be resolved using \(B^d \). Every parallel step produces a set of \(O(M) \) hyperplanes. By using Theorem 2.1, we either resolve these \(O(M) \) hyperplanes with \(O(\log M) \) oracle calls or find a hyperplane \(H \) which intersects \(A \). If latter case, we restrict problem (8) to the one which finds maximum on \(H \cap A \) since \(g_H \) would also be a global maximum. Hence, in this case, we terminate \(C^d \)'s simulation of \(A \) and proceed with the restricted problem. The running time of \(C^d \) is therefore \(O(b(d) \cdot D \cdot \log M + T) \), where \(b(d) \) is the running time of \(B^d \). Since \(B^d \) is implemented by making at most three recursive calls to \(C^{d-1} \), and \(b(1) = O(T) \), the running time of \(C^d \) will be \(O((D \log M)^d T) \).

Cole [16] showed that one can improve on Megiddo's results for certain important special cases. Like Megiddo's method, Cole's technique applies to one-dimensional parametric search problems, but we shall show that it can be extended to higher dimensions. What follows shall require some elementary knowledge of combinatorial circuits as described, say, in [12]. A combinatorial circuit \(G \) is a directed acyclic graph whose nodes are combinatorial elements (e.g., adders, min gates, etc.), and where an edge from element \(e_1 \) to element \(e_2 \) implies that the output of \(e_1 \) is an input to \(e_2 \). Elements of zero fan-in are inputs; elements of zero fan-out are outputs. An element is said to be active if all its inputs are known, but the associated operation has not been carried out yet. An element is said to have been resolved when the associated operation has been carried out.

Now, suppose that the algorithm \(A \) simulated by \(C^d \) is implemented as a combinatorial circuit \(G \) (which is given to us explicitly) of width \(M \) and depth \(D \), whose elements are multiplier gates where one of the two inputs is a constant, min gates, adders, and subtractors. Megiddo's approach would simulate \(G \) level by level, in \(D \) steps, where each step would carry out the operations of the gates at a given level. The operations within a level would be carried out using Theorem 2.1, with \(O(\log M) \) calls to the oracle \(B^d \). In Cole's approach, each step only resolves a fixed fraction of the active nodes, using only a constant number of oracle calls. The choice of which nodes to resolve is guided by a weight function \(w : V(G) \to \mathbb{R} \). To describe the strategy precisely, we will need some notation. The active weight, \(W \), of the circuit is the sum of the weights of its active elements. Let \(\alpha \leq 1/2 \) be a positive number. An \(\alpha \)-oracle with respect to \(w \) — or simply an \(\alpha \)-oracle — is a procedure that is guaranteed to resolve a set of active elements whose total weight is at least \(\alpha W/2 \). The following is a restatement and an extension of a result in [16].

Lemma 3.2. Let \(G \) be a combinatorial circuit of width \(M \) and depth \(D \). Let
\[d_{\text{min}} = \min(d_I, d_O), \] where \(d_I \) (\(d_O \)) denotes the maximum fan-in (fan-out) of an element of \(\mathcal{G} \). Then, there exists a weight function \(w \) such that \(\mathcal{G} \) can be evaluated with \(O(D \log d_{\text{min}} + \log M) \) calls to an \(\alpha \)-oracle with respect to \(w \).

Proof. Let the weight function \(w \) be defined as follows. The weight of each output element is 1, and the weight of each internal element is twice the sum of weights of its immediate descendants. Then scale the weights to make the total weight of input elements equal to \(M \).

Lemma 3.3. At the start of the \((k + 1)^{th}\) iteration, \(k \geq 0 \), the active weight is at most \((1 - \alpha/2)^k \cdot M\).

Proof. By induction on \(k \). The result holds for \(k = 0 \) since, at the start of the first iteration, only the input elements are active and their total weight is \(M \). To prove the inductive step, it suffices to show that at each iteration the active weight is reduced by a factor of at least \(\alpha/2 \).

Suppose element \(e \) is resolved. Then \(e \) ceases to be active, but all its descendants may become active. Hence, the resolution of \(e \) reduces the active weight by at least \(w(e)/2 \). Let the active weight of network be \(W \). In one step, the \(\alpha \)-oracle resolves a set of elements whose total weight is at least \(\alpha \cdot W \). Thus, in one step, the active weight is reduced from \(W \) to \((1 - \alpha/2)W\).

Lemma 3.4. The weight of any circuit element is at least \((2d_{\text{min}})^{-D}\).

Proof. After the initial weight assignment, but prior to scaling, the total weight of the elements at depth \(j \) is at most \(M(2d_{\text{min}})^{-j} \). Thus, the total weight of the input nodes is at most \(M(2d_{\text{min}})^D \). Hence, the scaling factor is at most \((2d_{\text{min}})^D\). Since, prior to scaling, every element has a weight of at least one, after scaling the weight of any circuit element will be at least \((2d_{\text{min}})^{-D}\).

Lemma 3.5. Let \(\gamma = c(D \log 2d_{\text{min}} + \log M) \), where \(c = [1 - 1/ \log_2(1 - \alpha/2)] \). Then, there will be no active elements after \(k \geq \gamma \) iterations.

Proof. First, observe that

\[
\gamma > -\frac{D \log 2d_{\text{min}} + \log M}{\log_2(1 - \alpha/2)} = \frac{\log M \cdot (2d_{\text{min}})^D}{\log_2(1 - \alpha/2)}
\]

By Lemma 3.3, the active weight at the start of the \((k + 1)^{th}\) iteration is at most \((1 - \alpha/2)^k \cdot M\). Using (10) and the fact that \((1 - \alpha/2)\) is less than one, we have

\[
(1 - \alpha/2)^k \cdot M \leq (1 - \alpha/2)^\gamma \cdot M
\]

\[
< (1 - \alpha/2)^{\log_2(1 - \alpha/2)} (M(2d_{\text{min}})^D)^{-1} \cdot M
\]

\[
= (2d_{\text{min}})^{-D}.
\]

As the weight of any element in the circuit is at least \((2d_{\text{min}})^{-D}\) and the active weight is strictly less than this weight, there are no active elements after the \(k^{th}\) iteration.

By Lemma 3.5, there will be no active elements after \(c(D \log 2d_{\text{min}} + \log M) \) steps, where \(c \) depends only on \(\alpha \). Thus, \(\mathcal{G} \) can be evaluated with \(O(D \log d_{\text{min}} + \log M) \) calls to an \(\alpha \)-oracle.

In order to use Lemma 3.2, we need to give an efficient implementation of the \(\alpha \)-oracle. Let \(A \) be the set of active elements of \(\mathcal{G} \) and let \(A_1 \subseteq A \) be the set of adders, subtractors, and constant multipliers. Each \(e \in T_1 \) can be resolved immediately by simply doing the corresponding operation on the input linear forms. The remaining
active elements are comparators, every one of which has an associated affine function. Let the set of all such functions be \(\mathcal{H} = \{ h_1, \ldots, h_n \} \), where \(h_i \) is the function associated with \(c_i \in A - A_1 \), and assign a weight of \(w(c_i) \) to \(h_i \). We either resolve a fixed fraction of the functions with \(O(1) \) oracle calls using algorithm \textsc{Weighted-Search} of section 2 or, if at any point during its execution, \textsc{Weighted-Search} encounters a hyperplane \(H \) (even an auxiliary one) such that \(H \cap A \neq \emptyset \), we stop \(\mathcal{C}^d \) and return \(s^*_H \) by simulating \(\mathcal{A} \) by \(\mathcal{C}^{d-1} \). The running time of the \(\alpha \)-oracle is therefore \(O(b(d)) \), where \(b(d) \) is the running time of \(\mathcal{B}^d \). Thus, Lemma 3.2 leads to an implementation of \(\mathcal{C}^d \) whose running time is \(O(b(d)(D + \log M) + D \cdot M) \). As before \(\mathcal{B}^d \) is implemented by making at most three recursive calls to \(\mathcal{C}^{d-1} \). From this, and the fact that \(b(1) = O(T) \), we can deduce that the running time of \(\mathcal{C}^d \) is \(O((D^d + \log^d M)T) \) (note that the weight function required for the application of Lemma 3.2, can be computed within this time bound).

3.3. Some remarks on constant factors. The use of schemes involving multidimensional search seems to lead invariably to large constants that depend on \(d \) [17]. Using standard techniques [10, 17], it can be shown that the algorithms described in this section have hidden constants of the form \(2^{O(d^2)} \), provided the search algorithm with singly exponentially small efficiency is used. Some improvements are possible. For the case where all the weights are powers of \(1/4 \), as would occur if the circuit to be simulated is a comparator-based sorter, we can obtain a search scheme with \(\alpha(d) = 1/3 \) and \(\beta(d) = 2(20^d-1) \); the details are technical and, hence, omitted. Using this improved scheme, the running time of the optimization algorithm will still have a constant of the form \(2^{O(d^2)} \), but the constant inside the \(O \) will be smaller.

4. Solving the Lagrangian dual when the number of constraints is fixed. The method of Lagrangian relaxation, originally developed by Held and Karp [21, 22], is motivated by the observation that many combinatorial problems that are known to be \(\text{NP} \)-hard can be viewed as easy problems complicated by a relatively small set of side constraints. More formally, we consider optimization problems of the following sort:

\[
Z_P = \min \{ c^T x : Ax \leq 0, x \in X \},
\]

where \(c \) is a \(n \times 1 \) vector, \(A \) is a \(d \times n \) matrix, \(x \) is a \(n \times 1 \) vector and \(X \) is a polyhedral subset of \(\mathbb{R}^d \). The set of inequalities \(Ax \leq 0 \) constitutes the complicating set of constraints, in the sense that, in its absence, the problem is polynomially solvable.

The \textit{Lagrangian relaxation} of (11) is obtained by pricing out the constraints \(Ax \leq 0 \) into the objective function by introducing a vector \(\lambda = (\lambda_1, \ldots, \lambda_d) \) of Lagrange multipliers as follows:

\[
Z_D(\lambda) = \min \{ c^T x + \lambda^T Ax : x \in X \}.
\]

It is well known that \(Z_D(\lambda) \leq Z_P \) for all \(\lambda \geq 0 \) [20]. Thus, if there is a polynomial-time algorithm to compute \(Z_D(\lambda) \) for any fixed \(\lambda \geq 0 \), problem (12) will provide an efficient way to obtain a lower bound on the solution to (11). Such a bound can be of great utility in branch-and-bound methods. The best lower bound on \(Z_P \) attainable via (12) is given by:

\[
Z^*_D = \max \{ Z_D(\lambda) : \lambda \geq 0 \}.
\]

Problem (13) is the \textit{Lagrangian dual} of (11) with respect to the set of constraints \(Ax \leq 0 \) and \(Z^*_D \) is the \textit{value} of the Lagrangian dual.
Computational experiments have repeatedly shown that Z_D^* provides excellent lower bounds on the optimum solution of Z_D [20], thus motivating the search for efficient algorithms to solve the Lagrangian dual. One widely-used method is subgradient optimization, first proposed in [22]. Despite its success in practice, this technique is not known to be a polynomial-time algorithm, even if (12) can be solved in polynomial time.

It is well known that if $Z_D(\lambda)$ can be computed in polynomial time for each fixed $\lambda \geq 0$, then the Lagrangian dual can be solved in polynomial time [31]. Recently, Bertimas and Orlin [6] have presented faster polynomial time algorithms for certain special cases. An issue that has received some attention [4] is whether there exist strongly polynomial algorithms to solve the Lagrangian dual. (An algorithm is said to be strongly polynomial if the number of arithmetic operations it carries out is polynomially bounded, independently of the magnitudes of the input numbers.) The algorithms discussed above are not strongly polynomial, even if $Z_D(\lambda)$ can be computed in strongly polynomial time.

We shall be interested here only in the case where the number d of complicating constraints is fixed. Since Z_D is a concave function [31], if $Z_D(\lambda)$ is computable in strongly polynomial time by a piecewise affine algorithm, the results of Megiddo and Cohen described in Section 3 imply the existence of strongly polynomial time algorithms to solve the Lagrangian dual. We focus our attention on two broad families of problems where weighted multidimensional search allows us to obtain faster algorithms than the Megiddo-Cohen approach: matroidal knapsack problems and a class of constrained optimum subgraph problems on graphs of bounded treewidth.

4.1. Matroidal knapsack problems. What follows presupposes some familiarity with matroid theory (see, e.g., [23]). Consider a matroid $\mathcal{M} = (E, \mathcal{G})$ where E, the ground set, is a finite set and \mathcal{G} is a collection of certain subsets of E called independent sets. We assume that \mathcal{G} is given in a concise form; i.e., there is an algorithm with running time $c(n)$, polynomial in $n = |E|$, for finding whether a given subset of E is independent. Suppose each element $e \in E$ has a value $v(e)$. In ordinary matroid optimization problems, one must find an optimum base (maximal independent set) of maximum total value. The standard algorithm for doing so is the greedy method, which first sorts the elements according to value and then considers the elements in nonincreasing order. An element e is added to the current set A if $A \cup \{e\}$ is independent. The greedy algorithm takes time $O(n \log n + nc(n))$.

In multi-constrained matroidal knapsack (MMK) problems, in addition to a value, each $e \in E$ has a d-dimensional size vector $s(e)$ and there is a d-dimensional capacity vector C. The problem is to find a base G^* such that

$$Z^* = \sum_{e \in G^*} v(e) = \max_{G \in \mathcal{G}} \left\{ \sum_{e \in G} v(e) : \sum_{e \in G^*} s(e) \leq C \right\}$$

We refer the reader to Camerini et. al. [11] for a discussion of the various applications of these problems, as well as for references. MMK problems are in general NP-hard. We can bound Z^* by solving its Lagrangian dual. Let

$$Z_D(\lambda) = \max_{G \in \mathcal{G}} \left\{ \sum_{e \in G} v(e) - \lambda \sum_{e \in G^*} s(e) - C \right\}$$

The Lagrangian dual is:

$$Z_D^* = \min \{ Z_D(\lambda) : \lambda \geq 0 \}.$$
In [11], Camerini et al. outline an algorithm for (14) whose running time is not guaranteed to be polynomial. Noting that the crucial first stage of the greedy method (where all comparisons are done) can be carried out in parallel using a $O(\log n)$-depth, $O(n)$-width sorting circuit [2], we can use the Cohen-Megiddo technique to obtain a $O((n \log n + n \cdot c(n)) \cdot \log^2 n)$ algorithm using the approach outlined in Section 3, with the greedy algorithm playing the role of algorithm A. Using Lemma 3.2, and the weighted multidimensional search algorithm, we obtain a $O((n \log n + n \cdot c(n)) \cdot \log^2 n)$ algorithm. We note that if the underlying matroidal problem has a more specialized structure (e.g., if it is the spanning tree problem), even faster algorithms are possible.

4.2. Constrained optimum subgraph problems. Optimum subgraph problems have the following form. Given a graph G with real-valued vertex and edge weight functions $w_V : V(G) \to \mathbb{R}$ and $w_E : E(G) \to \mathbb{R}$, respectively, find an optimum (i.e., minimum- or maximum-weight) subgraph H satisfying a property P. Well-known examples of such problems are minimum-weight dominating set, minimum-weight vertex cover, and the traveling salesman problem. Let us write $\text{val}_G(H)$ to denote $\sum_{v \in V(H)} w_V(v) + \sum_{e \in E(H)} w_E(e)$, where H is a subgraph of G. We can express all optimum subgraph problems as

$$Z^P_G = \text{opt}\{\text{val}_G(H) : H \text{ a subgraph of } G \text{ satisfying } P\},$$

where “opt” is either “min” or “max”, depending on the problem.

Even though many optimum subgraph problems are known to be NP-complete, several researchers have developed methodologies for devising linear-time algorithms for graphs of bounded tree-width [3, 5, 8, 9, 7, 35] (for a definition of tree-width, see [30]). While their approaches differ from each other in several respects, in essence they all deal with subgraph problems that have certain “regularity” properties that make them amenable to dynamic programming solutions. The class of regular problems is broad, and includes the subgraph problems mentioned above, as well as many others, such as the maximum cut problem and the Steiner tree problem (see, e.g., [3, 9, 7]).

Suppose that, in addition to a weight function, every $v \in V(G)$ ($e \in E(G)$) has a d-dimensional size vector $s_V(v)$ ($s_E(e)$). The problem is to solve (15) subject to the knapsack-like constraint

$$\sum_{v \in V(H)} s_V(v) + \sum_{e \in E(H)} s_E(e) \leq t$$

where t is a d-dimensional capacity vector. Even if the unconstrained problem is solvable in polynomial time, the constrained one may be NP-hard. Such is the case, for example, for the dominating set problem on trees (which are graphs of tree-width 1), even if $d = 1$ [24].

For every $v \in V(G)$, let $W_V(v, \lambda) = w_V(v) + \lambda^T s_V(v)$ and for every $e \in E(G)$, let $W_E(e, \lambda) = w_E(e) + \lambda^T s_E(e)$. Let us write $\text{Val}_G(H, \lambda)$ to denote $\sum_{v \in V(H)} W_V(v, \lambda) + \sum_{e \in E(H)} W_E(e, \lambda)$, where H is a subgraph of G. The Lagrangian relaxation of problem (15) is

$$Z^P_G(\lambda) = \text{opt}\{\text{Val}_G(H, \lambda) : H \text{ a subgraph of } G \text{ satisfying } P\}.$$
summarized in Section 3 imply that the Lagrangian dual can be solved in $O(n \log^{2d} n)$ time. Using weighted multidimensional search and Lemma 3.2, we can improve this to $O(n \log^d n)$.

Acknowledgement. We thank the referee for several useful comments.
REFERENCES

