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Abstract
An Intermediate Language (IL) specifies a program at a level of ab-
straction that includes precise semantics for state updates and con-
trol flow, but leaves unspecified the low-level software and hard-
ware mechanisms that will be used to implement the semantics.
Past ILs have followed the von Neumann execution model by mak-
ing sequential execution the default, and by supporting parallelism
with runtime calls for lower-level mechanisms such as threads and
locks. Now that the multicore trend is making parallelism the de-
fault execution model for all software, it behooves us as a com-
munity to study the fundamental requirements in parallel execution
models and explore how they can be supported by first-class ab-
stractions at the IL level.

In this paper, we introduce five key requirements for Parallel In-
termediate Representations (PIRs): 1) Lightweight asynchronous
tasks and communications, 2) Explicit locality, 3) Directed Syn-
chronization with Dynamic Parallelism:, 4) Mutual Exclusion and
Isolation with Dynamic Parallelism, and 5) Relaxed Exception se-
mantics for Parallelism. We summarize the approach being taken in
the Habanero Multicore Software Research project at Rice Univer-
sity to define a Parallel Intermediate Representation (PIR) to ad-
dress these requirements. We discuss the basic issues of designing
and implementing PIRs within the Habanero-Java (HJ) compila-
tion framework that spans multiple levels of PIRs. By demonstrat-
ing several program optimizations developed in the HJ compilation
framework, we show that this new PIR-based approach to com-
piler development brings robustness to the process of analyzing and
optimizing parallel programs and is applicable to a wide range of
task-parallelism programming models available today.

1. Introduction
The computer industry is at a major inflection point due to the end
of a decades-long trend of exponentially increasing clock frequen-
cies. It is widely agreed that parallelism in the form of multiple
power-efficient cores must be exploited to compensate for this lack
of frequency scaling. Unlike previous generations of hardware evo-
lution, this shift towards manycore computing will have a profound
impact on software. A number of task-parallel programming mod-
els have been developed in response to the multicore trend, includ-
ing OpenMP 3.0 [26], Cilk [7], Java Concurrency [13], Chapel [18],
X10 [9], Habanero-Java (HJ) [8], and Habanero-C (HC) [17].

An Intermediate Language (IL) specifies a program at a level
of abstraction that includes precise semantics for state updates
and control flow, but leaves unspecified the low-level software and
hardware mechanisms that will be used to implement the seman-
tics. Thus far, compilers for task-parallel languages have mostly
piggy-backed on ILs for sequential languages that follow the von
Neumann execution mode. In this approach, parallel constructs are
translated to opaque runtime calls for lower-level mechanisms such
as threads and locks, and it is generally expected that the compiler
will not perform code optimizations across these runtime calls.

However, this approach is both fragile and restrictive. It is frag-
ile because a smart sequential compiler may attempt optimizations
across these library calls that may be legal for a sequential program,
but illegal for a parallel program. It is restrictive because some op-
timizations that are possible across parallel constructs (e.g., load
elimination [4]) may be ruled out because of the presence of opaque
library calls. Now that the multicore trend is making parallelism the
default execution model for all software, it behooves us as a com-
munity to study the fundamental requirements in parallel execution
models and explore how they can be supported by first-class ab-
stractions at the IL level.

In this paper, we introduce three levels of Parallel Intermediate
Representations (PIRs)1 motivated by different kinds of analyses
and transformations. We summarize the approach being taken with
these three levels of PIRs in the Habanero-Java (HJ) compilation
framework that spans multiple levels of PIRs. By demonstrating
several program optimizations developed in the HJ compilation
framework, we show that this new PIR-based approach to compiler
development brings robustness to the process of analyzing and
optimizing parallel programs and is applicable to a wide range of
task-parallelism programming models available today. To the best
of our knowledge, this is the first design and implementation of
a compiler IL that explicitly represents task-parallel constructs as
first-class IL primitives.

The rest of the paper is organized as follows. Section 2 gives a
brief introduction of the HJ language and its execution model, in-
cluding parallel constructs for task creation, locality, synchroniza-
tion, and mutual exclusion. Section 3 gives details of the design of
the PIR. Section 4 discusses the implementation of the PIR ap-
proach in the HJ language. Section 5 discusses multiple program
transformations at the PIR level. Finally, Section 6 discusses re-
lated work, and Section 7 contains our conclusions.

2. Background: Parallel Extensions in the
Habanero-Java (HJ) language

In this section, we briefly summarize the main parallel constructs
available in the Habanero-Java (HJ) language [8]. Since that is
the task parallel language used in this work. However, the PIR
approach can be applicable to other task parallel languages as well.
async: The statement “async 〈stmt〉” causes the parent task to
create a new child task to execute 〈stmt〉 asynchronously (i.e.,
before, after, or in parallel) with the remainder of the parent task.
Figure 1 illustrates this concept by showing a code schema in which
the parent task, T0, uses an async construct to create a child task
T1. Thus, STMT1 in task T1 can potentially execute in parallel with
STMT2 in task T0.

1 We use the terms, “intermediate language (IL)” and “intermediate rep-
resentation (IR)” interchangeably in this paper. A strict distinction would
treat an IL as a persistent external representation of an IR defined as a set
of internal data structures.



//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Figure 1. An example code schema with async and finish
constructs

async is a powerful primitive because it can be used to en-
able any statement to execute as a parallel task, including for-loop
iterations and method calls. In general, an HJ program can create
an unbounded number of tasks at runtime. The HJ runtime sys-
tem is responsible for scheduling these tasks on a fixed number
of processors. It does so by creating a fixed number of worker
threads, typically one worker per processor core or hardware con-
text. These workers repeatedly pull work from one of those log-
ical work queues when they are idle, and push work on queues
when they generate more work. The work queue entries can in-
clude asyncs and continuations. An async is the creation of a new
task, such as T1 in Figure 1. A continuation represents a poten-
tial suspension point for a task, which (as shown in in Figure 1)
can include the point after an async creation as well as the point
following the end of a finish scope. Continuations are also re-
ferred to as task-switching points, because they are program points
at which a worker may switch execution between different tasks.

As with Java threads, local variables are private to each task,
whereas static and instance fields may be shared among tasks. An
inner async is allowed to read a local variable declared in an outer
scope. This semantics is similar to that of parameters in method
calls — the value of the outer local variable is simply copied on
entry to the async. However, an inner async is not permitted
to modify a local variable declared in an outer scope. The ability
to read non-final local variables in an outer scope is more general
than the standard Java restriction that a method in an inner-class
may only read a local variable in an outer scope if its declared to be
final.

HJ also supports a seq clause for an async statement with the
following syntax and semantics:
async seq(cond) <stmt> ≡

if (cond) <stmt> else async <stmt>
The seq clause simplifies programmer-controlled serialization
of task creation to deal with overheads. It is restricted to cases
when no blocking operation such as phaser next operations and
future get() operations is performed inside <stmt>. A key
benefit of the seq clause, relative to programmer inserted thresh-
old checks, is that it removes the burden on the programmer to
specify <stmt> twice with the accompanying software engineer-
ing hazard of ensuring that the two copies remain consistent. In the
future, the HJ system will explore approaches in which the com-
piler and/or runtime system can select the serialization condition
automatically for async statements.
finish: finish is a generalized join operation. The statement
“finish 〈stmt〉” causes the parent task to execute 〈stmt〉 and then
wait until all async tasks created within 〈stmt〉 have completed,
including transitively spawned tasks. Each dynamic instance TA of
an async task has a unique Immediately Enclosing Finish (IEF)
instance F of a finish statement during program execution,
where F is the innermost finish containing TA [33]. There
is an implicit finish scope surrounding the body of main()

so program execution will only end after all async tasks have
completed.

Like async, finish is a powerful primitive because it can
be wrapped around any statement thereby supporting modularity
in parallel programming. The scopes of async and finish can
span method boundaries in general. As an example, the finish
statement in Figure 1 is used by task T0 to ensure that child task
T1 has completed executing STMT1 before T0 executes STMT3.
If T1 created a child async task, T2 (a “grandchild” of T0), T0

will wait for both T1 and T2 to complete in the finish scope
before executing STMT3. One approach to converting a sequential
program into a parallel program is to insert async statements at
points where the parallelism is desired, and then insert finish
statements to ensure that the parallel version produces the same
result as the sequential version.

Besides termination detection, the finish statement plays an
important role with regard to exception semantics. If any async
throws an exception, then its IEF statement throws a MultiExcep-
tion [9] formed from the collection of all exceptions thrown by all
async’s in the IEF.
future: HJ also includes support for async tasks with return val-
ues in the form of futures. The statement, “final future<T>
f = async<T> Expr;” creates a new child task to evaluate
Expr that is ready to execute immediately. In this case, f contains
a “future handle” to the newly created task and the operation
f.get() (also known as a force operation) can be performed
to obtain the result of the future task. If the future task has
not completed as yet, the task performing the f.get() operation
blocks until the result of Expr becomes available. An important
constraint in HJ is that all variables of type future<T> must be
declared with a final modifier, thereby ensuring that the value of
the reference cannot change after initialization. This rule ensures
that no deadlock cycle can be created with future tasks. Finally,
HJ also permits the creation of future tasks with void return
type; in that case, the get() operation simply serves as a join on
the future task.
phasers: The phaser construct [33] integrates collective and
point-to-point synchronization by giving each task the option of
registering with a phaser in signal-only/wait-only mode for
producer/consumer synchronization or signal-wait mode for bar-
rier synchronization. These properties, along with the general-
ity of dynamic parallelism, phase-ordering and deadlock-freedom
safety properties, distinguish phasers from synchronization con-
structs in past work including barriers [16] and X10’s clocks [9].
The latest release of java.util.concurrent (j.u.c) in
Java 7 includes Phaser synchronizer objects, which are derived
in part [23] from the phaser construct in HJ. (The j.u.c.
Phaser class only supports a subset of the functionality avail-
able in HJ phasers.)

In general, a task may be registered on multiple phasers, and
a phaser may have multiple tasks registered on it. Three key
phaser operations are:
• new: When a task Ai performs a new phaser() operation, it
results in the creation of a new phaser ph such that Ai is regis-
tered with ph in the signal-wait mode (by default).
• registration: The statement, async phased (ph1〈mode1〉,
ph2〈mode2〉, . . .) 〈stmt〉, creates a child task that is registered on
phaser ph1 with mode1, phaser ph2 with mode2, etc. The child
tasks registrations must be subset of the parent task’s registra-
tions. async phased 〈stmt〉 simply propagates all of the parents
phaser registrations to the child.
• next: The statement next is a synchronization operation that has
the effect of advancing each phaser on which the invoking task
Ai is registered to its next phase, thereby synchronizing all tasks
registered on the same phaser. In addition, a next statement for



phasers can optionally include a single statement, next {S}.
This guarantees that the statement S is executed exactly once dur-
ing the phase transition [40, 33].
foreach: The statement foreach (point p : R) S sup-
ports parallel iteration over all the points in region R by launch-
ing each iteration as a separate async. A foreach statement
does not have an implicit finish (join) operation, but its termi-
nation can be ensured by enclosing it within a finish statement
at an appropriate outer level. Further, any exceptions thrown by the
spawned iterations are propagated to its IEF instance. Thus, we see
that foreach (point p : R) S(p) is semantically equiva-
lent to a combination of a sequential for loop with a local async
construct for each iteration, which can be written as follows: for
(point p : R) async {S(p)}.
forall: The forall construct is an enhancement of the foreach
construct. The statement forall (point p : R) S supports
parallel iteration over all the points in region R by launching each
iteration as a separate async, and including an implicit finish
to wait for all of the spawned asyncs to terminate.

Each dynamic instance of a forall statement also includes an
implicit phaser object (let us call it ph) that is set up so that all
iterations in the forall are registered on ph in signal-wait mode.
One way to relate forall to foreach is to think of forall
〈stmt〉 as syntactic sugar for “ph=new phaser(); finish
foreach phased (ph) 〈stmt〉”. Since the scope of ph is lim-
ited to the implicit finish in the forall, the parent task will
drop its registration on ph after all the forall iterations are cre-
ated. The forall statement was designed for use as the common
way to express parallel loops. However, programmers who need to
perform finer-grained control over phaser registration for paral-
lel loop iterations will find it more convenient to use foreach
instead.
isolated: The HJ construct, isolated 〈stmt1〉, guarantees that
each instance of 〈stmt1〉will be performed in mutual exclusion with
all other potentially parallel interfering instances of isolated
statements 〈stmt2〉. Two instances of isolated statements,
〈stmt1〉 and 〈stmt2〉, are said to interfere with each other if both
access the same shared location, such that at least one of the ac-
cesses is a write. As advocated in [20], we use the isolated key-
word instead of atomic to make explicit the fact that the construct
supports weak isolation rather than strong atomicity. Commutative
operations, such as updates to histogram tables or insertions into
a shared data structure, are a natural fit for isolated blocks
executed by multiple tasks in deterministic parallel programs.

The current HJ implementation takes a simple single-lock ap-
proach to implementing isolated statements, by treating each
entry of an isolated statement as an acquire() operation on the
lock, and each exit of an isolated statement as a release() op-
eration on the lock. Though correct, this approach essentially im-
plements isolated statements as critical sections, thereby se-
rializing interfering and non-interfering isolated statement in-
stances.

An alternate approach for implementing isolated statements
being explored by the research community is Transactional Mem-
ory (TM) [20]. However, there is as yet no currently available prac-
tical TM approach in widespread use. Recently, a new implemen-
tation technique called delegated isolation [22] has been designed
and prototyped for HJ isolated statements, and shown to be su-
perior to both single-lock and TM approaches in many cases. We
expect to include this technique in an HJ release in the near future.
places: The place construct in HJ provides a way for the program-
mer to specify affinity among async tasks. A place is an abstrac-
tion for a set of worker threads. When an HJ program is launched
with the command, “hj -places p:w”, a total of p×w worker
threads are created with w workers per place. The places are num-

bered in the range 0 . . . p − 1 and can be referenced in an HJ pro-
gram, as described below. The number of places remains fixed dur-
ing program execution; there is no construct to create a new place
after the program is launched. This is consistent with other runtime
systems, such as OpenMP, CUDA and MPI, that require the number
of worker threads/processes to be specified when an application is
launched. However, the management of individual worker threads
within a place is not visible to an HJ program, giving the runtime
system the freedom to create additional worker threads in a place,
if needed, after starting with w workers per place.

The main benefit of using p > 1 places is that an optional at
clause can be specified on an async statement or expression of
the form, “async at(place-expr) . . .”, where place-expr is a
place-valued expression. This clause dictates that the child async
task can only be executed by a worker thread at the specified place.
Data locality can be controlled by assigning two tasks with the
same data affinity to execute in the same place. If the at clause
is omitted, then the child task is scheduled by default to execute at
the same place as its parent task. The main program task is assumed
to start in place 0.

Thus, each task has a designated place. The value of a task’s
place can be retrieved by using the keyword, here. If a program
only uses a single place, all async tasks just run at place 0 by
default and there is no need to specify an at clause for any of
them. The current release of HJ supports a flat partition of tasks into
places. Support for hierarchical places [39] will be incorporated in
a future release.
HJ Code Examples: We conclude this section with a brief discus-
sion of two parallel programs written in HJ.

1 void sim_village_par(Village village) {
2 // Traverse village hierarchy
3 f i n i s h {
4 Iterator it=village.forward.iterator();
5 whi le (it.hasNext()) {
6 Village v = (Village)it.next();
7 async seq ((sim_level - village.level)
8 >= bots_cutoff_value)
9 sim_village_par(v);

10 } // while
11 ... ...;
12 } // finish:
13 ... ... }

Figure 2. Code fragment from BOTS Health benchmark written in
HJ

Figure 2 shows a code fragment from the BOTS Health bench-
mark [11] rewritten in HJ. The async seq construct in line 7-9
executes the function, sim village par(v), sequentially if the
seq condition in line 7-8 is true, otherwise it creates a child task to
invoke sim village par(v). As a result, multiple child tasks
created in multiple iterations can execute in parallel with the parent
task. The parent task waits at the end of line 12 for all these child
tasks to complete since the scope of the finish construct in this
code fragment ends at line 12.

Figure 3 shows a fragment from a phaser-based HJ imple-
mentation of the JGF SOR benchmark [19]. Each iteration of
the foreach loop is registered on the phaser object ph in
sigwaitmode (line 5)2. The statement next (line 10) effectively
performs a barrier operation among all iterations of the foreach
loop. The procedure SORrunIter is the computation kernel. The

2 An HJ forall construct would be more succinct since it contains an
implicit finish and an implicit phaser. However, the explicit finish,
foreach and phaser constructs in Figure 3 will make it easier to see the
connection with later PIR examples.



1 f i n i s h {
2 f i n a l i n t nproc = nthreads;
3 f i n a l phaser ph = new phaser();
4 foreach (p o i n t [proc]:[0:nproc-1])
5 phased (ph<hj.lang.phaserMode.SIG_WAIT>) {
6 f o r ( i n t o = 0; o <= 1; o ++) {
7 i n t lim = (M-o) / 2;
8 SORrunIter(G, o, lim,
9 proc, nproc);

10 next;
11 }
12 }
13 }

Figure 3. Code fragment from JGF SOR benchmark written in HJ

phaser synchronization ensures that all data dependences in the
algorithm are obeyed.

3. Parallel Intermediate Representation
This section discusses our approach to intermediate language ex-
tensions for parallelism. Figure 3 shows the structure of our PIR
framework. The input is the abstract syntax tree (AST) nodes ob-
tained from the language front-end, and the output is the target code
that can in general be expressed in a source language, in bytecode,
or machine code.

HPIR Generation

AST

HPIR Analysis & 
Transformation

HPIR to MPIR
MPIR Analysis & 
Transformation

LPIR Analysis & 
Transformation

MPIR to LPIR

target code 
Generation

target code 
(e.g. bytecode)

Figure 4. Overview of PIR Optimization Framework

Our framework contains three levels of PIR that are amenable
to different kinds of analyses and transformations as follows:

1. The High level PIR (HPIR) has a hierarchical structure that’s
akin to the AST for many concurrency constructs, but flattens
non-loop sequential constructs such as if-then-else statements.
This level is suitable for efficient high level analyses such as
May Happen in Parallel (MHP) [3], and to high level trans-
formations such as forall chunking with phasers [34], and
elimination of redundant async operations and strength reduc-
tion of termination finish operations to lighter-weight barrier
(next) synchronizations [41].

2. The Middle level PIR (MPIR) lowers HPIR so that higher-level
constructs like foreach and forall are translated to basic
async-finish structures. This level is suitable for efficient data
flow analyses in support of optimizations such as Load Elimi-
nation [5], where the flattened control flow simplifies data flow
analysis compared to the HPIR, and the presence of runtime-
independent finish and async operators simplifies analysis
compared to the LPIR.

1 FinishRegionEntry;
2 nproc = nthreads;
3 ph = new phaser();
4 specialInvoke ph.<init>();
5 i0 = nproc - 1;
6 ForeachRegionEntry iter(proc) region(0:i0)
7 phasers(ph, SIG_WAIT>)
8 LoopRegionEntry iter(o) region([0:1])
9 i f (o > 1) goto LoopRegionExit;

10 lim = (M-o) / 2;
11 staticInvoke SORrunIter(G, o,
12 lim, proc, nproc);
13

14 NextOperation;
15 o = o + 1;
16 goto LoopRegionEntry;
17 LoopRegionExit;
18 ForeachRegionExit;
19 FinishRegionExit;

Figure 5. HPIR Code Example

3. Low level PIR (LPIR) further lowers MPIR to expose runtime
calls for concurrency constructs e.g., runtime calls for work
stealing. This level is suitable for optimization of runtime calls
e.g., optimization of frame-store operations in compiler support
for work-stealing schedulers [14].

Thus, the motivation for three levels of IR arises from the fact
that different analyses and transformations can be performed more
conveniently at different levels.

3.1 High Level PIR
The High Level PIR (HPIR) is based on the hierarchical Region
Structure Graph (RSG) representation originally developed in the
ASTI optimizer for IBM’s XL Fortran compiler [30]. The RSG is
composed of three major data structures described in the following
subsections:

1. Region Structure Tree (RST)

2. Region Control Flow Graphs (RCFG’s)

3. Region Dictionaries (RD’s)

The backbone of the RSG is the Region Structure Tree (RST).
The RST is a hierarchical structure with regions for loops and
parallel source constructs in PIR. A Region Control Flow Graph
(RCFG) and a Region Dictionary (RD) are maintained for each
region. Together, the RST and the individual RCFG’s and RD’s
comprise the Region Structure Graph representation.

3.1.1 Region Structure Tree (RST)
The Region Structure Tree (RST) represents the region nesting
structure of the procedure being compiled. The regions are con-
structed for the following constructs : finish, async, isolated, loop
(for, foreach, forall, while) and soot method/procedure. Each
internal node (R-node) of the RST represents a single-entry region
of the input procedure, and each leaf node (L-node) of the RST cor-
responds to a single IR statement. Hierarchical nesting of regions
is captured by the parent-child relation in the RST. The root node
of the RST represents the entire procedure being compiled. We im-
pose three key constraints on legal region structures in an RST:

1. Tree Structure
The nesting structure for regions must form a single connected
tree (specifically, the RST), and that there must be a one-to-one
correspondence between leaf nodes in this tree and statements
in the input IR. This constraint implies that if two regions r1



and r2 have a non-empty intersection, then it must be the case
that either r1 ⊆ r2 or r2 ⊆ r1.

2. Proper Containment
Each R-node must have at least one child in the RST that is
an L-node. This implies that all regions are non-empty and
that the region corresponding to a non-root R-node r must
be properly contained within the region of its parent’s node
parent(r) (because it will not contain at least one L-node that is
a child of parent(r)). Another consequence of this constraint is
that there can be at most as many region nodes as there are PIR
statements in the input procedure.

3. Single-entry Regions
Each region must be single-entry. This is a natural consequence
of using structured programming languages like Java. In the
(rare) event that the input procedure contains irreducible control
flow, then the entire irreducible subgraph must be included in a
containing single-entry region.

An R-node serves as a useful anchor for all information related
to the region corresponding to the R-node. In particular, pointers
to the Region Control Flow Graph (RCFG), the Region Dictionary
(RD) and Region Dependence Graph (RDG) can all be stored in the
R-node for the region.

Note that there are no escaping async’s from a finish re-
gion, but a procedure’s IR may have escaping async’s. So the pro-
cedure level region maintains a summary of the escaping asyncs
potentially created within the procedure scope and (transitively)
within all of its callees. Since this is a static summary, it is con-
servative for soundness and may include async’s that may never
escape the procedure in any execution because of guard conditions
that cannot be analyzed by the compiler.

Figure 5 shows an example HPIR fragment3, obtained from the
SOR HJ program introduced in Figure 3. The parallel constructs:
finish, for loop, foreach loop are annotated by the region
entry/exit labels (e.g. line 6 and 18 annotated the foreach loop re-
gion). These region labels are used to carry the information related
to parallel constructs (e.g. loop iteration space, phaser, place),
they are also used as the START/EXIT nodes in region control flow
graph that will be introduced in the next subsection. Figure 6 shows
the RST corresponding to the HPIR code listed in Figure 5.

finish

S1 S2 S3 S4 S5 foreach

o-loop

S9 S10 nextinvoke 
SORruniter S15 S16

Figure 6. RST for HPIR example

3.1.2 Region Control Flow Graphs (RCFG’s)
For each R-node, R, in the RST, we have a region-level control
flow graph, RCFG(R), that defines the control flow for R’s imme-
diate children in the RST (the immediate children may be L-nodes
or R-nodes). Note that we did not propose that acyclic control flow
constructs like if-then-else and switch be mapped to separate re-
gions in the RST. RCFG(R) must contain a node corresponding to

3 This PIR implementation is based on the Soot JIMPLE IR, which is
discussed in next section.

each node that is a child of R. RCFG(R) also contains two pseudo
nodes: START and EXIT. The pseudo nodes have the following
interpretations:

• The START node is the source of all region entry branches.
Since R must be a single-entry region, all LCFG edges from
START have the same destination: the region’s entry node
(which must be a leaf node in the LST).

• The EXIT node is the target of all region exit branches.

As mentioned in the previous section, the START/EXIT nodes are
represented as region entry/exit labels. These two labels also an-
notate the region scope and carry object-based parallel constructs
(e.g., phaser(), place()) that are related to the current region.
For example, line 1 and 19 in Figure 5 show the START/EXIT node
for the finish region, and they are reflected as finish-entry
and finish-exit in Figure 7. Similarly, line 8 and 17 are
for the o-loop region, corresponding to loop-entry and
loop-exit nodes.

An edge e from X to Y in RCFG(R) represents normal or ex-
ceptional control flow in the current region. If edge e is a condi-
tional branch (i.e., if there are multiple outgoing edges from X in
RCFG(R)), then it also carries a label of the form (S,C) identi-
fying condition C in IL statement S as the branch condition that
enabled execution to flow along e.

For each control flow exit from region R, an edge is inserted
in R’s RCFG with target EXIT, and another edge is inserted in
the RCFG of R’s LST parent from R to the exit destination. If
multiple regions are being exited (as in a break statement or when
an exception is thrown), then additional outer-region edges need to
be inserted in enclosing regions.

finish region:

S1 S2 S3 S4 S5 foreachfinish 
entry

finish 
exit

foreach region:

o-loopforeach 
entry

foreach 
exit

o-loop region:

S9 S10 invoke 
SORruniter next S15 S16loop 

entry
loop 
exit

Figure 7. RCFG for HPIR example

3.1.3 Region Dictionaries (RD’s)
For each R-node, R, in RST, we have a region dictionary, RD(R),
that stores the summary references (exposed references):

• If RD(R) contains at least one exposed def of a variable V and
R′ = parent(R), then include a single summary def of variable
V in RD(R′), and indicate if it is a may-def or a must-def.

• If RD(R) includes at least one exposed use of variable V and
R′ = parent(R), then include a single summary use of variable
V in RD(R′).

Summary references are only stored for local variables in RD’s,
They have the potential of propagating upwards in the RST when
performing incremental re-analysis. However, we observe that the
upward propagation only occurs when the first use/def is added
to the child region or when the last use/def is removed from the
child region. Hence, we expect the amortized overhead of upward
propagation to be low when multiple references to a variable are
inserted or deleted. In general, the dictionary for any single region
will have a smaller number of references than a flat dictionary
for the entire procedure, and hence should provide more efficient
support for incremental reanalysis for a single region.



1 FinishRegionEntry;
2 nproc = nthreads;
3 ph = new phaser();
4 specialInvoke ph.<init>();
5 i0 = nproc - 1;
6 proc = 0;
7 entry_0:
8 i f (proc > i0) goto exit_0;
9 AsyncRegionEntry phasers(ph, SIG_WAIT>)

10 o = 0;
11 entry_1:
12 i f (o > 1) goto exit_1;
13 lim = (M-o) / 2;
14 staticInvoke SORrunIter(G, o,
15 lim, proc, nproc);
16

17 NextOperation;
18 o = o + 1;
19 goto entry_1;
20 exit_1:
21 AsyncRegionExit;
22 proc = proc + 1;
23 goto entry_0;
24 exit_0:
25 FinishRegionExit;

Figure 8. MPIR Code Example

3.2 Middle Level PIR
The middle level PIR (MPIR) is a flat IR, with labels that designate
the boundaries of high level constructs from HPIR that are lowered
to MPIR e.g., async, finish, and isolated constructs. Other
high level constructs are lowered into combinations of these con-
structs and normal IR, e.g. foreach is translated to a for loop
structure with an async loop body. Figure 8 gives an example of
the MPIR code lowered from the HPIR shown in Figure 5.

MPIR inherits the region labels created at the HPIR level. MPIR
also import two type edges that can help side-effect analysis for
parallelism:

• Happens-Before (HB): a directed edge is added from a source
statement S to a destination statement D if some instances
of D may/must wait before starting for an instance of S to
complete. HB edges are similar to synchronization edges in
Parallel Programming Graphs [29, 32, 31] HB edges are labeled
with context to identify the instances for which the happens-
before relationship holds. They are also labeled as “may” or
“must”edges.
HB edges may come from multiple sources:

Edges for finish operations: an edge from a region exit
label for an async and parallel loops (e.g.
ForEachRegionExit) to its matching
FinishRegionExit. (There will always be a unique
intra-procedural ExitFinishStmt for a given region
exit label, but there may be multiple potential inter-procedural
FinishRegionExit’s for methods with escaping async.);

Edges for phaser operations: next, signal, wait, and
next-single as outlined in [33].

• Mutual-Exclusion (ME): an undirected edge is added between
two isolated statements that may execute in parallel. Context in-
formation can be used to identify which execution instances of
the statements participate in the mutual exclusion relationship,
as outlined in [3].

1 act = staticInvoke hj.runtime.getCurrentActivity();
2 virtualInvoke act.startFinish();
3 nproc = nthreads;
4 ph = new phaser();
5 specialInvoke ph.<init>();
6 i0 = nproc - 1;
7 proc = 0;
8 entry_0:
9 i f (proc > i0) goto exit_0;

10 a0 = new Activity0;
11 specialInvoke a0.<init>(ph, t h i s , proc, nproc);
12 act = staticInvoke hj.runtime.getCurrentActivity();
13 place = virtualInvoke act.getPlace();
14 virtualInvoke place.runAsync(a0);
15 proc = proc + 1;
16 goto entry_0;
17 exit_0:
18 act = staticInvoke hj.runtime.getCurrentActivity();
19 virtualInvoke act.stopFinish();
20 ... ...
21 // Activity class
22 p u b l i c c l a s s Activity0 {
23 p u b l i c phaser ph;
24 p u b l i c Sor thisobj;
25 p u b l i c i n t proc;
26 p u b l i c i n t nproc;
27

28 // async closure
29 p u b l i c vo id runHjTask() {
30 o = 0;
31 entry_1:
32 i f (o > 1) goto exit_1;
33 lim = (thisobj.M-o) / 2;
34 staticInvoke SORrunIter(thisobj.G, o,
35 lim, proc, nproc);
36

37 virtualInvoke ph.doNext();
38 o = o + 1;
39 goto entry_1;
40 exit_1:
41 }
42

43 p u b l i c vo id <init>(phaser, Sor, i n t , i n t) {
44 t h i s.ph = @param0;
45 t h i s.thisobj = @param1;
46 t h i s.proc = @param2;
47 t h i s.nproc = @param3;
48 }
49 }

Figure 9. LPIR Code Example

3.3 Low Level PIR
The Low Level PIR (LPIR) lowers all parallel constructs to combi-
nations of runtime APIs and standard IR statements, thereby gener-
ating what appears to be standard sequential code. Figure 9 shows
the LPIR code obtained from the MPIR code shown in Figure 8.
The async closure in Figure 8 was extracted out-of-line as a new
Activity class, whose runHjTask method contains the code
from the async body. The task spawn, phaser signal-wait and
start/stop finish operations have all been translated to calls to
the Habanero-Java runtime system.

For different runtime library that has different implementation,
the LPIR translation has to generate corresponding API call and
code layout, thus LPIR is runtime dependent. Since LPIR has same
feature as the target language’s IR, the optimizations related to the
parallel runtime system are applied at this level.



4. Implementation
In this section, we describe an implementation of the PIR structure
introduced in Section 3. This implementation was done for the
Habanero-Java (HJ) language.

4.1 HJ Compiler and Runtime

Polyglot 
Frontend

HJ Source

IR Generation

PIR PIR Analysis & 
Transformation

Bytecode 
Generation

.class filesHJ Runtime Lib

JVM

Soot Compilation 
Framework

Figure 10. HJ Compiler Structure

As shown in Figure 4.1, the HJ compiler is primarily composed
of two software components:

• The Polyglot [25] front-end that takes HJ source code and
translates it to an AST representation;

• The Soot compilation framework [35] that includes: an HJ ex-
tension to translate the Polyglot AST to JIMPLE with our PIR
extensions; multi-level PIR translation, analysis and transfor-
mations; and, generation of verifiable output Java classfiles that
can run on a standard JVM with the HJ runtime library.

As mentioned in Section 3, the LPIR includes runtime-dependent
code generation with calls to the HJ runtime library [8]. In HJ, the
LPIR has to support code generation for multiple runtime schedul-
ing policies e.g., work-sharing (WSH), work-stealing with help-
first (WST-HF) and work-stealing with work-first (WST-WF) poli-
cies [14, 15], as shown shown in Figure 11.

Lower HJ 
Objects

WSH Code 
Generation

WST-HF Code 
Generation

WST-WF Code 
Generation

MPIR

LPIR

Figure 11. Runtime Dependent Code Generation

4.2 PIR Extensions
The HJ implementation of PIR is an extension of Soot’s JIMPLE
IR, which is a 3-address IR for expressing Java program. A detailed
description of Soot and its IRs can be found in [35]. We focus
this summary of JIMPLE on the JimpleBody structure which
is used to represent a method body. Soot also includes additional
data structures for class, field, and method declarations, as well as a
framework for intra-method and whole-program data flow analyses
and points-to-analysis. A JimpleBody contains references to
three Chain’s (lists) — a chain of local variables, a chain of
traps (exception handlers), and a chain of units (statement blocks).
Transformations can be performed on JIMPLE by creating packs
of BodyTransformer objects,

JIMPLE is a stack-less typed IR with blocks of 3-address state-
ments connected by a control flow graph. It is similar in content
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Figure 12. Class Hierarchy of Region Entry/Exit in PIR

to the HIR (High level IR) used in Jikes RVM [12]. Statement
operands can include local variables and heap locations. JIMPLE
statements are classified as follows:

• Core statements include AssignStmt, IdentityStmt,
and NopStmt. IdentityStmt’s are copy statements with
special operands for parameters and the “this” reference as
variables’s. e.g., r0 := @this; i1 := @parameter0;

• Intraprocedural control-flow statements include IfStmt,
GotoStmt, TableSwitchStmt, LookupSwitchStmt.
(There is also a RetStmt for JSR return bytecode instruc-
tions, but it is not used when generating bytecode from Java
or HJ programs.) Note that there is no explicit label statement;
instead, control flow targets are implicitly represented in the
control flow edges used to connect statement blocks. However,
labels are automatically generated when pretty-printing JIM-
PLE.

• Interprocedural control-flow statements include InvokeStmt,
ReturnStmt, and ReturnVoidStmt. A new statement is
translated to two statements in JIMPLE, an AssignStmt for
object instantiation with a new operator, and an InvokeStmt
for the constructor.

• Exception control-flow statements include ThrowStmt.

The following subsections summarize four categories of ex-
tensions to JIMPLE to obtain an implementation of a PIR for
Habanero-Java.

4.2.1 Closure-based Parallel Constructs
As shown in Figure 5 and 8, all closure-based parallel con-
structs (e.g., foreach loops) should provide region entry/exit
labels to identify the closure (e.g., foreachRegionEntry,
foreachRegionExit). These region entry/exit labels are cur-
rently extended with implicit side-effects to ensure that compiler
transformations can not eliminate or reorder them. Figure 12 lists
the class hierarchy of the region entry/exit objects for all closure-
based parallel constructs in our implementation.

The region entry label also carries the list of relevant object
based constructs, e.g., index-region and phaser objects (see
lines 6–8 in Figure 5).

4.2.2 Hierarchical Representation
The basic element of the hierarchical HPIR representation is an
internal R-node. In our HPIR implementation, we use RSTNode
objects to represent both R-nodes and L-nodes in the RST and
RCFGs. Each RSTNode instance contains:

1. A reference to the statement that is either region entry label (for
an R-node) or normal JIMPLE IR (for an L-node);



1 p u b l i c i n t e r f a c e RSTNode {
2 // get statement
3 p u b l i c Stmt getNodeStmt();
4

5 // maintation RST
6 p u b l i c boolean hasSubNode(RSTNode node);
7 p u b l i c vo id addSubNode(RSTNode node);
8 p u b l i c RSTNode getParent();
9 p u b l i c vo id setParent(RSTNode parent);

10 p u b l i c boolean hasSubNode(RSTNode node);
11

12 // get/set RCFG
13 p u b l i c UnitGraph getUnitGraph();
14 p u b l i c vo id setUnitGraph(UnitGraph unitGraph);
15

16 // get/set Region Dictionary
17 p u b l i c Set<Local> collectDefs(Body methodBody);
18 p u b l i c Set<Local> collectUses(Body methodBody);
19

20 // check node types
21 p u b l i c boolean isMethodNode();
22 p u b l i c boolean isRegionNode();
23 p u b l i c boolean isForEachNode();
24 p u b l i c boolean isForLoopNode();
25 p u b l i c boolean isFinishNode();
26 p u b l i c boolean isAsyncNode();
27 ...
28 }

Figure 13. RSTNode Interface in PIR

1 p u b l i c i n t e r f a c e Phaser ex tends HjObject {
2 p u b l i c Value getModeValue();
3 }
4

5 // implementation
6 p u b l i c c l a s s Phaser_c ex tends HjObject_c
7 implements Phaser {
8 p u b l i c Value getModeValue() {
9 re turn t h i s.phaserModeBox.getValue();

10 }
11 ...
12 }

Figure 14. Phaser Object in PIR

2. A reference to the region dictionary that contains both a use set
and a def set;

3. A reference to the region’s RCFG, implemented as a control
flow graph object in Soot.

Figure 13 shows the RSTNode interface with appropriate accessor
and modifier methods.

4.2.3 Object-based Parallel Constructs
The parallel constructs related to synchronization and locality con-
trol are object-based e.g., phaser and place. These constructs
are implemented as implementations of the HjObject interface
and HjObject c class that can encapsulate the object reference
and its attribute. For example, Figure 14 gives the implementation
of the phaser interface and class for our PIR that maintains the
phaser object reference and its phaser mode captured as an at-
tribute.

4.2.4 Operation-based Parallel Constructs
Operation-based parallel constructs are those that perform oper-
ations on object-based parallel constructs, e.g., signal, wait, and
signal-wait operations that can be performed on phasers.. These
constructs are represented as an entry-only region, (see example in
line 14 in Figure 5 and line 17 in Figure 8).

5. PIR Applications
The previous sections summarized the design and implementation
of three different levels of PIR. In this section, we briefly describe
our experiences with different clients in the HJ compiler, for the
HPIR, MPIR and LPIR levels.

5.1 High Level PIR
The HPIR provides rich information on the structure of the input
parallel program. By leveraging the RST, the compiler can easily
identify context information for all parallel constructs in the input
program. We summarize three analyses and transformations that
all leverage region structure information available in the HPIR, and
have been implemented in the HJ compiler.

5.1.1 May-Happen-In-Parallel (MHP) Analysis
An efficient MHP analysis for the X10 language4 in [3]. To check if
two statements, S1 and S2, may execute in parallel, this algorithm
walks up the RST from S1 and S2 respectively, while terminating
at their Least Common Ancestor (LCA). The MHP determination
then follows from checking if S1 is contained in an exposed async
in the LCA. Details can be found in [3].

5.1.2 Chunking Parallel Loops
An approach to chunking parallel loops with barrier synchroniza-
tion operations was introduced in [34] , while also reducing/elimi-
nating the overhead of task creation as much as possible. The trans-
formation algorithm is divided into two stages:

1. Identify the parallel loops (foreach and forall) by travers-
ing the RST;

2. Given the parallel loop as an entry point, apply loop transfor-
mation rules in a top-down manner to enlarge the granularity of
parallelism.

Details can be found in [34] .

5.1.3 SPMDization
A new methodology for reducing the overhead of both task cre-
ation and termination by SPMDizing parallel loops (e.g., forall
or finish + foreach) was introduced in [42]. The algorithm
encountered the RST in a bottom-up manner; for each parallel loop,
it applies transformation rules in a top-down manner to expose re-
dundant termination operations and enlarge the granularity of par-
allelism. At each level of the RST, the algorithm also attempts loop
fusion, wherever it is legal to do so.

5.2 Middle Level PIR
The MPIR creates a flat PIR structure with labels for basic par-
allel constructs, including task creation, termination, and synchro-
nization. It also maintains the happens-before and mutual-exclusion
edges that can assist program analysis. Examples of MPIR-level
compiler analysis and transformations are discussed below:

5.2.1 Load Elimination
An inter-procedural load elimination algorithm that can opti-
mize redundant load operations in parallel programs with async,
finish and isolated constructs was introduced in [5]. The
basic approach is to perform side-effect analysis among all tasks
that run in parallel or have a mutual exclusion relationship via the
isolated construct. This algorithm checks each async closure
and procedure with the assistance of happens-before and mutual
exclusion information to identify potential side-effects and verify
the safeness of load elimination.

4 We re-implemented this algorithm for HJ, with extensions to support inter-
procedural analysis.



5.2.2 Delegated Isolation
A novel execution model (called AIDA) for mutual exclusion in
parallel programs was introduced in [22]. It performs frequent,
irregular accesses to pointer-based shared data structures. A key
compiler transformation in this approach is to insert object owner-
ship instructions into isolated regions to enable the isolated
code region to be executed speculatively. This work is done at the
MPIR level, which provides precise information for isolated,
async and finish regions.

5.2.3 Data Race Detection
The ESP-bags algorithm [28] is based on instrumenting load/store
operations within async, finish and isolated regions. Sim-
ilarly, the Permission Region [37] approach uses PIR support to
insert ownership verification code automatically and to avoid false
positive by analyzing the finish, async regions. All of these
instrumentations are performed at the MPIR level, and then subse-
quently optimized to eliminate redundant checks.

5.3 Low Level PIR
The LPIR has the same structure as a traditional sequential IR,
since all parallel constructs are lowered to a combination of run-
time API calls and sequential IR statements. In [27], Raman et.
al discussed program optimizations related to code generation for
work-stealing runtime systems. This work includes optimizing the
context frame fields by eliminating redundant variables that were
not accessed within tasks, and applying object inlining for frame
objects so as to reduce the overhead of task spawning.

6. Related Work
In this section, we briefly summarize relevant past work on IR ex-
tensions to support analysis and transformation of explicitly paral-
lel programs.

The Parallel Program Graph (PPG) was described in [32]. Com-
pared with a sequential control flow graph, the PPG introduces an
mgoto control edge for task creation, and a synchronization edge
for directed task synchronization. In [31], it was shown how the
PPG can be used to perform a reaching-def analysis for explicitly
parallel programs.

The Concurrent SSA (CSSA) representation [21] introduced
by Lee et. al is an analytical framework that represents parallel
programs written using cobegin/coend constructs, along with
event objects to perform inter-thread synchronization. A key re-
striction in this work is that loops are not permitted to contain par-
allel constructs, though a single sequential task may contain loops.
The CSSA is built upon the concurrent CFG that is similar to PPG
and includes conflict edges for interfering memory accesses that
may be performed by distinct threads. The CSSA extended standard
scalar SSA form [10] by adding special π functions to reflect the
race conditions introduced by the conflict edges. In [24], Novillo
further extended CSSA by supporting mutex edges that can help
identify critical sections among parallel threads for more precise
analysis of parallel program with mutual exclusion.

The X10 [38] compilation system employs both the Polyglot
front-end [25] and the WALA library [36] to perform program anal-
ysis for X10 programs. Polyglot-level analysis and transformation
is performed in a manner akin to HPIR, such as the communica-
tion optimizations performed in [6]. In contrast, the WALA-level
analysis is performed in a manner akin to MPIR since WALA also
represents regular statements at a level similar to a three-address
form of Java bytecodes. Unlike the Soot JIMPLE IR (which sup-
ports both analyses and transformations), the WALA library only
supports program analysis (and no transformations).

In general, much of the past related work either extended con-
trol flow and dataflow analyses for parallel programs or modified
sequential approaches to perform program analysis in a restricted
manner. In contrast, our framework introduced three levels of PIR
(as discussed earlier) which span both hierarchical and flat repre-
sentations so as to provide robust support for a wide range of pro-
gram analyses and transformations.

7. Conclusions
In this paper, we introduced three levels of Parallel Intermediate
Representations (PIRs) motivated by different kinds of analyses
and transformations. We summarized the approach being taken
with these three levels of PIRs in the Habanero-Java (HJ) com-
pilation framework that spans multiple levels of PIRs. By demon-
strating several program optimizations developed in the HJ compi-
lation framework, we showed that this new PIR-based approach to
compiler development brings robustness to the process of analyz-
ing and optimizing parallel programs and is applicable to a wide
range of task-parallel programming models available today. To the
best of our knowledge, this is the first design and implementation of
a compiler IL that explicitly represents task-parallel constructs as
first-class IL primitives. Directions for future work include incor-
porating additional analyses and transformations in our PIR frame-
work, as well as exploring a PIR implementation for C/C++ pro-
grams with the HPIR level implemented in Rose [2] and the MPIR
and LPIR levels implemented in LLVM [1].
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