A Systematic Mapping Study on High-level Language Virtual Machines

Vinicius H. S. Durelli, Katia R. Felizardo, and Marcio E. Delamaro

Computer Systems Department
University of São Paulo (ICMC-USP)
13560-970 – São Carlos – SP – Brazil
{durelli,katiarf,delamaro}@icmc.usp.br

October 17, 2010
Motivation
- Research on HLL VMs
- First Step Towards Filling in Such a Gap

Systematic Mapping
- Overview
- Steps
- Data Extraction and Mapping

Threats to Validity

Concluding Remarks
Research on High-level Language Virtual Machines

- A great deal of the contemporary high-level languages have their execution environment based upon high-level language virtual machines (HLL VMs).

- There is a **large body of literature** on research in virtual machine for high-level languages.

 - A mature research area means a **sharp increase** in the number of results made available, thus it becomes **essential** to **summarize** and provide an **overview** of such area.

- To the best of our knowledge **there are no comprehensive studies** focusing on an overview of this research area and its most investigated subjects.
Motivation: First Step Towards Filling in Such Gap

In order to fill in such a gap it is needed to ascertain the **nature**, **extent**, and **quantity** of published research papers.

Contribution:

1. Areas that have been most subjected to investigation.

 Side effect: Areas that require further research.

2. The relevant publication forums.

3. HLL VM implementations that are the most widely used within the academic community.
Evidence-based Paradigm

Definition → Systematic Mapping

Methodology that involves searching the literature in order to aggregate and categorize primary studies, thereby yielding a synthesized view of the research area under consideration [Petersen et al., 2008].

Advantages:

- The approach used for searching and inclusion and exclusion criteria are defined in a research protocol and reported as an outcome.

Side effects: Transparent; Replicable; Updatable.
Systematic Mapping Process: Overview

Process Steps

1. **Definition of Research Question**
 - Review Scope
2. **Conduct Search**
 - All Papers
3. **Screening of Papers**
 - Relevant Papers
4. **Keywording using Abstracts**
 - Classification Scheme
5. **Data Extraction and Mapping Process**
 - Systematic Mapping

Figure: The systematic mapping process [Petersen et al., 2008].
Research questions must **embody the mapping study purpose**.

RQ_1: which functionalities/features/characteristics of HLL VMs have been most investigated?

RQ_2: which are the mainstream HLL VM implementations within the academic community?
Search for Primary Studies

Search String → combination of these keywords and acronyms

virtual machine, VM, high-level language virtual machine, and HLL VM.

We used the search string on the following electronic databases:

- ACM Digital Library,
- EngineeringVillage,
- IEEE Xplore,
- Springer Lecture Notes in Computer Science (LNCS), and
- ScienceDirect.

- No limits were placed on date of publication.
The inclusion criteria **devised** and **applied** are:

- if several papers reported similar studies, only the most recent was selected;

- papers describing more than one study had each study individually evaluated;

- it has to describe at least a prototypical implementation of the proposed improvement, thereby mentioning the HLL VM implementation that was modified.
and the following exclusion criteria:

- papers that do not present studies pertaining to HLL VMs, e.g., papers describing research on system VMs;

- studies describing the introduction of improvements that consist in solely modifying the intermediate language of the HLL VM under consideration;

- studies whose proposed enhancements do not imply in making changes to the underlying HLL VM, e.g., papers describing features implemented atop HLL VMs;
Screening: Exclusion Criteria (ii)

- studies whose target HLL VM is either a co-designed (e.g., composed of both software and hardware portions) or an entirely implemented in hardware HLL VM;

- technical reports, documents that are available in the form of either abstracts or presentations (i.e., elements of “grey” literature), and secondary literature reviews (i.e., mapping studies).
Final Set of Selected Primary Studies

<table>
<thead>
<tr>
<th>Electronic Database</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM Digital Library</td>
<td>1554</td>
</tr>
<tr>
<td>Engineering Village</td>
<td>1395</td>
</tr>
<tr>
<td>IEEE Xplore</td>
<td>309</td>
</tr>
<tr>
<td>Springer LNCS</td>
<td>640</td>
</tr>
<tr>
<td>ScienceDirect</td>
<td>1123</td>
</tr>
<tr>
<td>Total</td>
<td>5021</td>
</tr>
<tr>
<td>Candidates</td>
<td>142</td>
</tr>
<tr>
<td>Final set</td>
<td>128</td>
</tr>
</tbody>
</table>

Table: Papers retrieved from each electronic database, total of candidate studies, and the final set.
Keywording

- The aim of this step is to devise our own **classification scheme** and **categories** for the selected primary studies.

- **Certain sections** are read for the purpose of finding **keywords and concepts** that reflect their contribution.
Resulting Categories

<table>
<thead>
<tr>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization</td>
</tr>
<tr>
<td>Garbage Collection (GC)</td>
</tr>
<tr>
<td>Debugging</td>
</tr>
<tr>
<td>Memory Leak Tolerance (MLT)</td>
</tr>
<tr>
<td>New Language Construct (NLC)</td>
</tr>
<tr>
<td>Profiling</td>
</tr>
<tr>
<td>Aspect-Oriented Programming (AOP)</td>
</tr>
<tr>
<td>Embedded System (ES)</td>
</tr>
<tr>
<td>Security</td>
</tr>
<tr>
<td>Real-Time</td>
</tr>
<tr>
<td>Distributed Computing (DC)</td>
</tr>
<tr>
<td>Fault Tolerance (FT)</td>
</tr>
<tr>
<td>Resource Sharing among HLL VMs (RSVM)</td>
</tr>
<tr>
<td>Testing</td>
</tr>
</tbody>
</table>
Figure: Frequency of studies in each category*.

* Certain studies were grouped in **more than one category**
According to our results, these are the “trendy” subjects:

Figure: Year-wise distribution of publications on the most investigated categories.
Distribution of Primary Studies by Electronic Database

- ACM Digital Library: 62
- Engineering Village: 38
- Springer LNCS: 16
- IEEE Xplore: 12
- ScienceDirect: 0
Distribution of Primary Studies by Publication Type

<table>
<thead>
<tr>
<th>Publication Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference</td>
<td>46</td>
</tr>
<tr>
<td>Journal</td>
<td>31</td>
</tr>
<tr>
<td>Symposium</td>
<td>25</td>
</tr>
<tr>
<td>Book Chapter</td>
<td>18</td>
</tr>
<tr>
<td>Workshop</td>
<td>8</td>
</tr>
</tbody>
</table>
Map: The Most-Widely Used HLL VM Implementations
We cannot rule out threats from a quality assessment perspective.

(We wanted to be as inclusive as possible) We simply selected studies without assigning any scores.

Another threat consists in whether we have properly identified and selected all relevant publications.

Whether our resulting classification scheme and categories are coherent also represents a threat to validity.
The mapping study results, although not entirely surprising (some may argue), can be used to support several claims that are frequently made but not **scientifically backed up**.

- Our mapping study reveals that the majority of research into HLL VMs focuses on optimizing these execution environments, improving their memory management capabilities, and tailoring them to resource-constrained settings.

- As for the publication types, the majority of the studies are **conference publications**.

- Another contribution of this paper is the **map** we have created.
References

A Systematic Mapping Study on High-level Language Virtual Machines

Vinicius H. S. Durelli, Katia R. Felizardo, and Marcio E. Delamaro

Computer Systems Department
University of São Paulo (ICMC-USP)
13560-970 – São Carlos – SP – Brazil
{durelli,katiarf,delamaro}@icmc.usp.br

October 17, 2010