Secure Email

• Requirements:
 – Secrecy
 – Sender, receiver authentication
 – Message integrity

• Secrecy
 – Can use public keys to encrypt messages
 • Inefficient for long messages
 – Use symmetric keys
 • Alice generates a symmetric key K
 • Encrypt message M with K
 • Encrypt K with EB
 • Send K(M), EB(K)
 • Bob decrypts using his private key, gets K, decrypts K(M)

Secure Email

• Authentication and Integrity (with no secrecy)
 – Alice applies hash function H to M (H can be MD5)
 – Creates a digital signature DA(H(M))
 – Send M, DA(H(M)) to Bob

• Putting it all together
 – Compute DA(H(M))
 – M' = { M, DA(H(M)) }
 – Generate symmetric key K, compute K(M')
 – Encrypt K as EB(K)
 – Send K(M'), EB(K)

• Used in PGP (Pretty Good Privacy)
Secure Sockets Layer (SSL)

- SSL enhances TCP with security services
 - Server authentication, confidentiality, data integrity, client authentication (optional)
- SSL can be employed by any application that runs over TCP.
 - e.g., between Web browsers and servers for e-commerce (https)

SSL mutual authentication.
Example: Kerberos

Authentication in Kerberos

Setting up a secure channel in Kerberos