Chapter 2 Getting Connected

• When connecting two nodes with one link, we need to address four fundamental problems in the data link layer
 o Framing – delineating the sequence of bits transmitted over the link into frames that can be delivered to the end hosts
 o Error detection – detecting transmission errors and taking the appropriate action
 o Reliable delivery - making a link appear reliable even though it corrupts frames from time to time.
 o Media access control - mediating access to a link when the link is shared by multiple hosts

• Framing – determining where the frame begins and ends
 o Byte-counting approach: DDCMP
 ▪ Used in DEC’s DECNet
 ▪ A byte-oriented protocol – each frame is viewed as a collection of bytes (characters) rather than bits
 ▪ Uses special SYN character (i.e., the sentinel character) to indicate where the frame starts
 ▪ The COUNT field specifies the number of bytes in the frame’s body
 ▪ If the COUNT field is corrupted, the end of the frame would not be correctly detected
 ▪ The CRC field can be used to determine that the frame is bad
• Sentinel-based approach: HDLC
 ▪ Developed by IBM, standardized by ISO
 ▪ A bit-oriented protocol - a frame is viewed as a collection of bits
 ▪ The special bit sequence 01111110 (known as sentinel) denotes the beginning and the end of a frame
 ▪ The bit sequence 01111110 may appear in the body of a frame → use bit stuffing to solve the problem
 • Sender inserts a 0 if it sees 5 consecutive 1’s
 • When receiver sees 5 consecutive 1’s:
 o If next bit is 0, remove it.
 o If next two bits are 10: end of frame;
 o If next two bits are 11: an error has occurred, discard the frame
 ▪ Error detection
 o Bit errors are sometimes introduced into frames due to electrical interference or thermal noise
 o To allow the receiver to detect bit errors, the sender adds redundant bits to a frame
 ▪ Redundant bits are derived from the original message using some well-defined algorithm f
 ▪ Sender sends M (original message) and R (redundant bits), where R=f(M)
 ▪ Receiver gets M’ and R’ and checks if f(M’)=R’. If yes, no error detected; otherwise, error detected
 o Internet Checksum Algorithm
 ▪ Used by IP, TCP, UDP
Consider the data being checksummed as a sequence of 16-bit integers. Add them up using ones complement arithmetic and then take the ones complement of the result. That 16-bit number is the checksum.

- Pros: use only 16 redundant bits, easy to implement
- Cons: relatively weak protection against errors (compared to CRC)

Cyclic Redundancy Check (CRC)

- Represent an m-bit message as an m-1 degree polynomial
 - E.g., message=10011010 corresponds to \(M(x)=x^7+x^4+x^3+x^1 \)
- Sender and receiver agree on a divisor polynomial \(C(x) \) of degree \(k \). The last term of \(C(x) \) must be 1
 - E.g. \(C(x)=x^3+x^2+1, \ k=3 \)
- Sender appends \(k \) redundant bits to the end of the message such that the polynomial represented by the complete message is exactly divisible by \(C(x) \).
- Receiver divides the received message by \(C(x) \), if remainder is not 0, then an error has occurred.

- How to compute the \(k \) redundant bits?
 - Multiply \(M(x) \) by \(x^k \); that is, add \(k \) zeros at the end of the message. The resulting message is \(T(x) \).
 - Divide \(T(x) \) by \(C(x) \) using modulo 2 division.
 - Subtract the remainder from \(T(x) \). The result is the frame to be transmitted.
- How to select \(C(x) \)?
 - Select \(C(x) \) so that it is very unlikely to divide evenly into a message that has errors introduced into it
- It can be proved that $C(x)$ of degree k can detect
 - All single-bit errors, as long as the x^k and x^0 terms have nonzero coefficients
 - All double-bit errors, as long as $C(x)$ contains a factor with at least three terms
 - Any odd number of errors, as long as $C(x)$ contains the factor $(x + 1)$
 - Any ‘burst’ error (i.e., sequence of consecutive errored bits) for which the length of the burst is less than k bits.
 - Most burst errors of length greater than k bits.