
Quaternions∗

(Com S 477/577 Notes)

Yan-Bin Jia

Dec 8, 2022

1 Introduction

Up until now we have learned that a rotation in R
3 about some axis through the origin can be

represented by a 3× 3 orthogonal matrix with determinant 1. However, the matrix representation
seems redundant because only four of its nine elements are independent. Also the geometric inter-
pretation of such a matrix is not clear until we carry out several steps of calculation to extract the
rotation axis and angle. Furthermore, to compose two rotations, we need to compute the prod-
uct of the two corresponding matrices, which requires twenty-seven multiplications and eighteen
additions.

Quaternions are very efficient for analyzing situations where rotations in R
3 are involved. A

quaternion is a 4-tuple, which is a more concise representation than a rotation matrix. Its geo-
metric meaning is also more obvious as the rotation axis and angle can be trivially recovered. The
quaternion algebra to be introduced will also allow us to easily compose rotations. This is because
quaternion composition takes merely sixteen multiplications and twelve additions.

The development of quaternions is attributed to W. R. Hamilton [5] in 1843. Legend has it that
Hamilton was walking with his wife Helen at the Royal Irish Academy when he was suddenly struck
by the idea of adding a fourth dimension in order to multiply triples. Excited by this breakthrough,
as the couple passed the Brougham bridge of the Royal Canal, he carved the newfound quaternion
equations

î
2
= ĵ

2
= k̂

2
= îĵk̂ = −1

into the stone of the bridge. This event is marked by a plaque at the exact location today. Hamilton
spent the rest of his life working on quaternions, which became the first non-commutative algebra
to be studied.

∗Appendices are optional for reading unless specifically required. Sections 2.1, 2.2, 3, and 4 are based on Chap-
ters 3–6 of the book [9] by J. B. Kuipers, Sections 1 and 6 are partially based on the essay by S. Oldenburger [10]
who took the course, and Section 5 is based on [6].

1

2 Quaternion Algebra

The set of quaternions, together with the two operations of addition and multiplication, form a
non-commutative ring.1 The standard orthonormal basis for R

3 is given by three unit vectors
î = (1, 0, 0), ĵ = (0, 1, 0), k̂ = (0, 0, 1). A quaternion q is defined as the sum of a scalar q0 and a
vector q = (q1, q2, q3); namely,

q = q0 + q = q0 + q1î+ q2ĵ + q3k̂. (1)

2.1 Addition and Multiplication

Addition of two quaternions acts component-wise. More specifically, consider the quaternion q
above and another quaternion

p = p0 + p1î+ p2ĵ + p3k̂. (2)

Then we have
p+ q = (p0 + q0) + (p1 + q1)î+ (p2 + q2)ĵ + (p3 + q3)k̂.

Every quaternion q has a negative −q with components −qi, i = 0, 1, 2, 3.
The product of two quaternions satisfies these fundamental rules introduced by Hamilton:

î⊗ î = ĵ ⊗ ĵ = k̂ ⊗ k̂ = î⊗ ĵ ⊗ k̂ = −1,
î⊗ ĵ = k̂ = −ĵ ⊗ î,

ĵ ⊗ k̂ = î = −k̂⊗ ĵ,

k̂ ⊗ î = ĵ = −î⊗ k̂.

Now we can give the product of two quaternions p and q:

p⊗ q = (p0 + p1î+ p2ĵ + p3k̂)⊗ (q0 + q1î+ q2ĵ + q3k̂)

≡ p0q0 − (p1q1 + p2q2 + p3q3) + p0(q1î+ q2ĵ + q3k̂) + q0(p1î+ p2ĵ + p3k̂)

+(p2q3 − p3q2)î + (p3q1 − p1q3)ĵ + (p1q2 − p2q1)k̂.

Whew! It is too long to remember or even to understand what is going on. Fortunately, we can
utilize the inner product and cross product of two vectors in R

3 to write the above quaternion
product in a more concise form:

p⊗ q = p0q0 − p · q + p0q + q0p+ p× q. (3)

In the above, p = (p1, p2, p3) and q = (q1, q2, q3) are the vector parts of p and q, respectively. The
product (3) can be simplified when p has only a scalar component or both p and q have vector
components only:

p0 ⊗ q = p0q0 + p0q = p0q, (4)

p⊗ q = −p · q + p× q. (5)

1For the purpose of this course, you don’t really need to know what a ring is although it can be found in a standard
algebra text such as the one by Hungerford [7] or Jacobson [8].

2

Example 1. Suppose the two vectors are given as follows:

p = 3 + î− 2ĵ + k̂,

q = 2− î+ 2ĵ + 3k̂.

We single out their vector parts p = (1,−2, 1) and q = (−1, 2, 3) and calculate their inner and cross products:

p · q = −2,

p× q =

∣

∣

∣

∣

∣

∣

î ĵ k̂

1 −2 1
−1 2 3

∣

∣

∣

∣

∣

∣

= −8î− 4ĵ.

By (3) the quaternion product is then

p⊗ q = 6− (−2) + 3(−î+ 2ĵ + 3k̂) + 2(î− 2ĵ + k̂) + (−8î− 4ĵ)

= 8− 9î− 2ĵ + 11k̂.

We see that the product of two quaternions is still a quaternion with scalar part p0q0−p ·q and
vector part p0q + q0p+ p× q. The set of quaternions is closed under multiplication and addition.
It is not difficult to verify that multiplication of quaternions is distributive over addition. The
identity quaternion has real part 1 and vector part 0.

2.2 Conjugate, Norm, and Inverse

Let q = q0 + q = q0+ q1î+ q2ĵ + q3k̂ be a quaternion. The conjugate of q, denoted q∗, is defined as

q∗ = q0 − q = q0 − q1î− q2ĵ − q3k̂.

From the definition we immediately have

(q∗)∗ = q0 − (−q) = q,

q + q∗ = 2q0,

q∗ ⊗ q = (q0 − q)⊗ (q0 + q)

= q0q0 − (−q) · q + q0q + (−q)q0 + (−q)× q by (3)

= q20 + q · q
= q20 + q21 + q22 + q23

= q ⊗ q∗.

Given two quaternions p and q, we can easily verify that

(p⊗ q)∗ = q∗ ⊗ p∗. (6)

The norm of a quaternion q, denoted by |q|, is the scalar |q| = √q∗ ⊗ q. A quaternion is called a
unit quaternion if its norm is 1. The norm of the product of two quaternions p and q is the product

3

of the individual norms, for we have

|p⊗ q|2 = (p⊗ q)⊗ (p⊗ q)∗

= p⊗ q ⊗ q∗ ⊗ p∗

= p|q|2 ⊗ p∗

= p⊗ p∗|q|2

= |p|2|q|2.

The inverse of a quaternion q is defined as

q−1 =
q∗

|q|2 .

We can easily verify that q−1 ⊗ q = q ⊗ q−1 = 1. In the case q is a unit quaternion, the inverse is
its conjugate q∗.

3 Quaternion Rotation Operator

How can a quaternion, which lives in R
4, operate on a vector, which lives in R

3? First, we note
that a vector v ∈ R

3 is a pure quaternion whose real part is zero.

Pure Quaternions

Quaternions

R
3

v = 0 + v R
4

v

Figure 1: R3 is viewed as the space of pure quaternions.

Using the unit quaternion q, we define an operator on vectors v ∈ R
3:

Lq(v) = q ⊗ v ⊗ q∗

= (q20 − ‖q‖2)v + 2(q · v)q + 2q0(q × v). (7)

Here we make two observations. First, the quaternion operator (7) does not change the length of
the vector v for

‖Lq(v)‖ = ‖q ⊗ v ⊗ q∗‖
= |q| · ‖v‖ · |q∗|
= ‖v‖.

4

Second, the direction of v, if along q, is left unchanged by the operator Lq. To verify this, we let
v = kq and have

q ⊗ v ⊗ q∗ = q ⊗ (kq)⊗ q∗

= (q20 − ‖q‖2)(kq) + 2(q · kq)q + 2q0(q × kq)

= k(q20 + ‖q‖2)q
= kq.

Essentially, any vector along q is thus not changed under Lq. This makes us guess that the operator
Lq acts like a rotation about q, which will be made precise by the next theorem.

Before proceeding with the theorem, we remark that the operator Lq is linear over R3. For any
two vectors v1,v2 ∈ R

3 and any a1, a2 ∈ R we can show that

Lq(a1v1 + a2v2) = a1Lq(v1) + a2Lq(v2).

Theorem 1 For any unit quaternion

q = q0 + q = cos
θ

2
+ û sin

θ

2
, (8)

and for any vector v ∈ R
3 the action of the operator

Lq(v) = q ⊗ v ⊗ q∗

on v is equivalent to a rotation of the vector through an angle θ about û as the axis of rotation.

Proof Given a vector v ∈ R
3, we decompose it as v = a + n, where a is the component along

the vector q and n is the component normal to q. Then we show that under the operator Lq, a is
invariant, while n is rotated about q through an angle θ. Since the operator is linear, this shows
that the image q ⊗ v ⊗ q∗ is indeed interpreted as a rotation of v about q through an angle θ.

We know from an early reasoning that a is invariant under Lq. So let us focus on the effect of
Lq on the orthogonal component n. We have

Lq(n) = (q20 − ‖q‖2)n+ 2(q · n)q + 2q0(q × n)

= (q20 − ‖q‖2)n+ 2q0(q × n)

= (q20 − ‖q‖2)n+ 2q0‖q‖(û× n),

where in the last step above we introduced û = q/‖q‖. Denote n⊥ = û× n. So the last equation
becomes

Lq(n) = (q20 − ‖q‖2)n+ 2q0‖q‖n⊥. (9)

Note that n⊥ and n have the same length:

‖n⊥‖ = ‖n × û‖ = ‖n‖ · ‖û‖ sin π

2
= ‖n‖.

Finally, we rewrite (9) into the form

Lq(n) =

(

cos2
θ

2
− sin2

θ

2

)

n+

(

2 cos
θ

2
sin

θ

2

)

n⊥

= cos θn+ sin θn⊥.

5

θ

nq

n⊥

Lq(n)

Figure 2: Quaternion acts as rotation.

Namely, the resulting vector is a rotation of n through an angle θ in the plane defined by n and
n⊥. See the figure below. This vector is clearly orthogonal to the rotation axis.

We make two remarks here. First, it is clear to us that a rotation of a vector v about û

through θ is equivalent to its rotation about −û through −θ. The latter rotation is described by
the quaternion

cos
−θ
2

+ (−û) sin −θ
2

= cos
θ

2
+ û sin

θ

2
,

the same as that describing the former rotation. Second, the quaternion negation −q = cos 2π+θ
2 +

û sin 2π+θ
2 , when applied to v, will result in the same vector L−q = (−q)⊗v⊗(−q)∗ = q⊗v⊗q∗. It

represents the rotation about the same axis through the angle 2π+θ, essentially the same rotation.
The redundancy ratio of quaternions in describing rotations is thus two, dimensionally six less than
that of orthogonal matrices.

We substitute the unit quaternion form (8) into (7) to obtain the resulting vector from rotating
a vector v about the axis û through θ:

Lq(v) =

(

cos2
θ

2
− sin2

θ

2

)

v + 2

(

û sin
θ

2
· v
)

û sin
θ

2
+ 2 cos

θ

2

(

û sin
θ

2
× v

)

= cos θ · v + (1− cos θ)(û · v)û+ sin θ · (û× v). (10)

Let us rewrite the right hand side of equation (7) as a matrix product:

Lq(v) =
(

(

q20 − ‖q‖2
)

I3 + 2qq⊤ + 2q0[q]×

)

v,

where I3 is the 3× 3 identity matrix and the operator [·]× yields a matrix which, when left multi-
plying any vector v, results in the cross product of the operand with v. Namely,

[q]× =

0 −q3 q2
q3 0 −q1
−q2 q1 0

 (11)

carries out a cross product with q as the left operand. Given that v is an arbitrary vector, the
rotation matrix corresponding to q is then

R =
(

q20 − ‖q‖2
)

I3 + 2qq⊤ + 2q0[q]×.

6

Conversely, given a rotation matrix R, we can use the method described in the notes “Rotations in
the Space” to recover the axis and angle of the rotation, and subsequently construct the quaternion.

Example 2. Consider a rotation about an axis defined by (1, 1, 1) through an angle of 2π/3. About this

axis, the basis vectors î, ĵ, and k̂ generate the same cone when rotated through 2π. We define a unit vector

û =
1√
3
(1, 1, 1).

Let the rotation angle θ = 2π/3. The quaternion q defining the rotation is then given as

q = cos
θ

2
+ û sin

θ

2

=
1

2
+

1

2
î+

1

2
ĵ +

1

2
k̂.

Let us compute the effect of rotation on the basis vector î = (1, 0, 0). We obtain the resulting vector
using (10):

v = −1

2

1
0
0

+

(

1 +
1

2

)

· 1√
3
· 1√

3

1
1
1

+

√
3

2
· 1√

3

1
1
1

×

1
0
0

=

− 1
2

0
0

+

1
2
1
2
1
2

+

0
1
2

− 1
2

= ĵ.

The rotation of v under the operator Lq can also be interpreted from the perspective of an
observer attached to the vector v. What he sees happening is that the coordinate frame rotates
through the angle −θ about the same axis defined by the quaternion.

Theorem 2 For any unit quaternion

q = q0 + q = cos
θ

2
+ û sin

θ

2
,

and for any vector v ∈ R
3 the action of the operator

Lq∗(v) = q∗ ⊗ v ⊗ (q∗)∗ = q∗ ⊗ v ⊗ q

is a rotation of the coordinate frame about the axis û through an angle θ while v is not rotated.

Equivalently, the operator Lq∗ rotates the vector v with respect to the coordinate frame through
an angle −θ about q.

The quaternion operator Lq(v) = q ⊗ v ⊗ q∗ may be interpreted as a point or vector rotation

with respect to the (fixed) coordinate frame. The quaternion operator Lq∗(v) = q∗⊗ v⊗ q may be
interpreted as a coordinate frame rotation with respect to the (fixed) space of points.

7

4 Quaternion Operator Sequences

Let p and q be two unit quaternions. We first apply the operator Lp to the vector u and obtain
the vector v. To v we then apply the operator Lq and obtain the vector w. Equivalently, we apply
the composition Lq ◦ Lp of the two operators:

w = Lq(v)

= q ⊗ v ⊗ q∗

= q ⊗ (p⊗ u⊗ p∗)q∗

= (q ⊗ p)⊗ u⊗ (q ⊗ p)∗

= Lq⊗p(u).

Because p and q are unit quaternions, so is the product q ⊗ p. Hence the above equation describes
a rotation operator whose defining quaternion is the product of the two quaternions p and q. The
axis and angle of the composite rotation is given by the product q ⊗ p.

Similarly, consider the quaternion operators Lp∗(u) = p∗⊗u⊗ p and Lq∗(v) = q∗⊗v⊗ q which
carry out rotations of the coordinate system determined by quaternions p and q, respectively.
Then the quaternion product p ⊗ q defines an operator L(p⊗q)∗ , which represents a sequence of
operators Lp∗ followed by Lq∗ . The axis and angle of rotation of L(p⊗q)∗ are those represented by
the quaternion product p⊗ q.

Example 3. We now use the quaternion method to find the axis and angle of the composite rotation in
the Satellite tracking example from the notes titled “Rotations in the Space”. Recall that the tracking
application takes a rotation about the z-axis through a bearing angle α followed by a rotation about the new
y-axis through an elevation angle β. After these two rotations, the new x-axis points toward the satellite.
The two rotations are respectively described by the two quaternions below:

p = cos
α

2
+ sin

α

2
k̂,

q = cos
β

2
+ sin

β

2
ĵ.

Since we are rotating the coordinate frame, the two operators Lp∗ and Lq∗ are applied sequentially. The
composite rotation operator is L(p⊗q)∗ , which transforms coordinates in the station frame to those in the
tracking frame. And the quaternion describing the composition rotation is the product p ⊗ q which is as
follows.

p⊗ q =
(

cos
α

2
+ sin

α

2
k̂
)

(

cos
β

2
+ sin

β

2
ĵ

)

= cos
α

2
cos

β

2
+ cos

α

2
sin

β

2
ĵ + sin

α

2
cos

β

2
k̂ + sin

α

2
sin

β

2
(k̂ × ĵ)

= cos
α

2
cos

β

2
− sin

α

2
sin

β

2
î+ cos

α

2
sin

β

2
ĵ + sin

α

2
cos

β

2
k̂.

The axis of the composite rotation is defined by the vector

v =

(

− sin
α

2
sin

β

2
, cos

α

2
sin

β

2
, sin

α

2
cos

β

2

)

. (12)

And the angle of rotation θ satisfies

cos
θ

2
= cos

α

2
cos

β

2
,

sin
θ

2
= ‖v‖.

8

The cosine is same as obtained in Section 4 of the handouts titled “Rotation in the Space” for we have

cos θ = 2 cos2
θ

2
− 1

= 2 cos2
α

2
cos2

β

2
− 1

= 2
cosα+ 1

2
· cosβ + 1

2
− 1

=
cosα cosβ + cosα+ cosβ − 1

2
.

Note that the rotation axis and angle in that section transforms coordinates in the tracking frame to those

in the station frame. This explains why the axis v in (12) is opposite to the one obtained in that section

while the angle is the same.

5 Application: 3-D Shape Registration

An important problem in model-based recognition is to find the transformation of a set of data
points that yields the best match of these points against a shape model. The process is often
referred to as data registration. The data points are typically measured on a real object by range
sensors, touch sensors, etc., and given in Cartesian coordinates. The quality of a match is often
described as the total squared distance from the data points to the model. When multiple shape
models are possible, the one that results in the least total distance is then recognized as the shape
of the object.

Quaternions are very effective in solving the above least-squares-based registration problem. Let
us begin with a formulation of the problem in 3D. Let {p1,p2, . . . ,pn} be a set of data points. We
assume that p1, . . . ,pn are to be matched against the points q1, . . . , qn on a shape model. Namely,
the correspondences between the data points and those on the model have been predetermined.
Then the problem is to find a rotation, represented by an orthogonal matrix R with det(R) = 1,
and a translation b as the solution to the following minimization:

min
R,b

n
∑

i=1

‖Rpi + b− qi‖2. (13)

We begin by computing the centroids of the two sets of points:

p̄ =
1

n

n
∑

i=1

pi;

q̄ =
1

n

n
∑

i=1

qi.

The relative coordinates of all the points to their centroids are obtained as, for 1 ≤ i ≤ n,

p′
i = pi − p̄;

q′i = qi − q̄.

9

Model

rotation

translation

Data

p5

p2

p3

q2

q7

q4

p1

p4

p7

p6

q6

q3

q5

q1

Figure 3: Matching two point sets pi and qj .

Clearly, we have

n
∑

i=1

p′
i =

n
∑

i=1

pi − np̄ =

n
∑

i=1

pi − n · 1
n

n
∑

i=1

pi = 0; (14)

n
∑

i=1

q′i =

n
∑

i=1

qi − nq̄ =

n
∑

i=1

qi − n · 1
n

n
∑

i=1

qi = 0. (15)

Let us rewrite the objective function in (13) in terms of p̄, q̄,p′
i, q

′
i:

n
∑

i=1

‖Rpi + b− qi‖2 =
n
∑

i=1

‖Rp′
i − q′

i +Rp̄− q̄ + b‖2

=

n
∑

i=1

(Rp′
i − q′i +Rp̄− q̄ + b) · (Rp′

i − q′
i +Rp̄− q̄ + b)

=

n
∑

i=1

‖Rp′
i − q′

i‖2 +
(

2

n
∑

i=1

(Rp′
i − q′i)

)

· (Rp̄− q̄ + b) + n‖Rp̄− q̄ + b‖2

=

n
∑

i=1

‖Rp′
i − q′

i‖2 + 2

(

R

n
∑

i=1

p′
i −

n
∑

i=1

q′
i

)

· (Rp̄− q̄ + b) + n‖Rp̄− q̄ + b‖2

=

n
∑

i=1

‖Rp′
i − q′

i‖2 + n‖Rp̄− q̄ + b‖2, by (14) and (15).

The minimizing translation b should make the second term in the last equation above zero, yielding:

b = q̄ −Rp̄. (16)

Thus we have decomposed the problem of data registration into two phases: the first of which
determines its optimal translation, as given by equation (16), and the second of which determines

10

the optimal rotation of the set {pi}. Note that every point pi is transformed into R(pi − p̄) + q̄

before matching against qi. Equivalently, to find the best match of the two point sets {pi} and
{qi}, we first translate {pi} to let their centroid coincide with that of {qi}, and then rotate about
the common centroid.

By the reasoning so far, the optimal rotation can be solved from the formulation below:

min
R

n
∑

i=1

‖Rp′
i − q′i‖2. (17)

Here we present an exact solution to (17) as described in [6] using quaternions. An equivalent
quaternion-based solution is given in [4]. The version of matching two curves (or surfaces), also
assuming pointwise correspondences, is solved exactly in [12] in a somewhat similar manner without
the use of quaternions.

First, we rewrite the summation in (17) as follows:

n
∑

i=1

‖Rp′
i − q′

i‖2 =
n
∑

i=1

(Rp′
i · Rp′

i)− 2
n
∑

i=1

(Rp′
i · q′

i) +
n
∑

i=1

q′
i · q′

i

=

n
∑

i=1

(

‖p′
i‖2 + ‖q′

i‖2
)

− 2

n
∑

i=1

Rp′
i · q′

i.

The first summand in the last equation above does not depend on the rotation, so we need only
minimize the second summand. Equivalently, this can be done through a maximization:

max
R

n
∑

i=1

Rp′
i · q′

i. (18)

The rotation matrix R has nine entries, only four of which are independent due to the or-
thogonality and unit determinant of R. Instead, we represent rotations using unit quaternions.
Essentially, we find the unit quaternion q that maximizes

n
∑

i=1

(q ⊗ p′
i ⊗ q∗) · q′

i. (19)

Here we view quaternions as vectors in R
4. Let q = (q0, q1, q2, q3)

⊤ and q∗ = (q0,−q1,−q2,−q3)⊤.
Also, the points p′

1, . . . ,p
′
n and q′1, . . . , q

′
n are viewed as 4-tuples with p′

i = (0, p′i1, p
′
i2, p

′
i3)

⊤ and
q′
i = (0, q′i1, q

′
i2, q

′
i3)

⊤ by a slight abuse of notation.
Applying the definition of quaternion product, it is not difficult to show that

(q ⊗ p′
i ⊗ q∗) · q′

i = (q ⊗ p′
i) · (q′

i ⊗ q). (20)

Next, we intend to rewrite the summands in (19) as matrix products. For this purpose, we define
matrices

Pi =

0 −p′i1 −p′i2 −p′i3
p′i1 0 p′i3 −p′i2
p′i2 −p′i3 0 p′i1
p′i3 p′i2 −p′i1 0

and Qi =

0 −q′i1 −q′i2 −q′i3
q′i1 0 −q′i3 q′i2
q′i2 q′i3 0 −q′i1
q′i3 −q′i2 q′i1 0

,

11

for 1 ≤ i ≤ n. Then the quaternion products q⊗p′
i and q′

i⊗q are equivalent to the matrix products
Piq and Qiq. We thus have

n
∑

i=1

(q ⊗ p′
i ⊗ q∗) · q′i =

n
∑

i=1

(q ⊗ p′
i) · (q′

i ⊗ q) (by (20))

=
n
∑

i=1

(Piq) · (Qiq)

=

n
∑

i=1

q⊤P⊤
i Qiq

= q⊤

(

n
∑

i=1

P⊤
i Qi

)

q.

It is easy to verify that each matrix P⊤
i Qi is symmetric, so is the 4× 4 matrix

M =

n
∑

i=1

P⊤
i Qi.

Thus M has real eigenvalues only, say, λ1, λ2, λ3, λ4 with λ1 ≥ λ2 ≥ λ3 ≥ λ4.
2 Let v1,v2,v3,v4

be the corresponding orthogonal unit eigenvectors. Eigenvectors corresponding to different eigenval-
ues must be orthogonal to each other. Multiple eigenvectors corresponding to the same eigenvalue
are chosen to be orthogonal to each other. The quaternion q is a linear combination of these
eigenvectors:

q = α1v1 + α2v2 + α3v3 + α4v4.

Therefore we have

q⊤Mq = (α1v1 + α2v2 + α3v3 + α4v4)
⊤M(α1v1 + α2v2 + α3v3 + α4v4)

= (α1v1 + α2v2 + α3v3 + α4v4) · (λ1α1v1 + λ2α2v2 + λ3α3v3 + λ4α4v4)

= λ1α
2
1 + λ2α

2
2 + λ3α

2
3 + λ4α

2
4.

The product q⊤Mq achieves its maximum when α1 = 1 and α2 = α3 = α4 = 0. Therefore, the
unit quaternion q that maximizes (19) is the eigenvector that corresponds to the largest eigenvalue

of the matrix M . It describes the optimal rotation for (17), i.e, for data registration.
When the corresponding points q1, . . . , qn are unknown, a well-known method called the Itera-

tive Closest Point (ICP) [1] solves the registration problem. Given a set of data points {p1, . . . ,pn},
the ICP algorithm finds the initial corresponding points q

(0)
1 , . . . , q

(0)
n as the closest points on the

surface model to p
(0)
1 = p1, . . . ,p

(0)
n = pn, respectively. Then it applies the introduced quaternion-

based method to determine the rotation and translation that best match {p(0)
i } with {q

(0)
i }. The

second iteration applies the just found transformation to every p
(0)
i , obtaining p

(1)
i , and then de-

termines its new corresponding point q
(1)
i on the model as the closest point to p

(1)
i . Recompute the

best rotation and translation using quaternions, and so on. The algorithm stops when the change
in the new transformation becomes small enough.

2Multiplicities of the eigenvalues are counted.

12

6 Discussion

In physics, quaternions are correlated to the nature of the universe at the level of quantum me-
chanics. They lead to elegant expressions of the Lorentz transformations, which form the basis of
the modern theory of relativity. In signal processing, Quaternion Fourier Transform (QFT) is a
powerful tool. The QFT restores the lost commutative property at the cost of no longer being a
division algebra. It can be used, for instance, to embed a watermark in a color image. Other ap-
plications of QFT include face recognition (jointly with Quaternion Wavelet Transform) and voice
recognition [10].

Homogeneous coordinates are introduced to make translation multiplicative, along with scaling
and rotation. They are convenient in representing points, lines, and planes, and fundamental for
studying projections. Like quaternions, homogeneous coordinates are 4-tuples. This suggests that
there might be a way of doing scaling and translation using some sort of quaternion operator. As
of now, no such way has been found as quaternions and their rotation operators are algebraically
incompatible with homogeneous coordinates.

In 1873, quaternions were extended to dual quaternions by Clifford [2] to represent both rota-
tions and translations. Dual quaternions have found applications in kinematics, robotics, motion
estimation, and computer graphics.

A Power, Exponential, and Logarithm

Let us first look at a unit quaternion q = q0 + q. That q20 + ‖q‖2 = 1 implies that there exists a
unique θ ∈ [0, π] such that cos θ = q0 and sin θ = ‖q‖. The quaternion can thus be rewritten in
terms of θ and the unit vector û = q/‖q‖:

q = cos θ + û sin θ.

A general quaternion q = q0+q can be represented as a unit quaternion scaled by the norm |q|:

q = |q|(cos θ + û sin θ), (21)

where û = q/‖q‖ and θ = arccos(q0/|q|). Euler’s identity for a complex number

a+ bi =
√

a2 + b2eiφ,

where i2 = −1 and φ = atan2(b, a), generalizes to the quaternion q in a way that (21) can be
rewritten as

q = |q|euθ.
This allows us to define the power of q as

qρ = |q|ρ
(

euθ
)ρ

= |q|ρ(cos(ρθ) + û sin(ρθ)), ρ ∈ R. (22)

Intuitively, the power is taken over the norm of the quaternion while a scaling is performed on its
“phase angle”.

An exponential of q makes use of the Taylor expansion that treats q just as an ordinary variable:

eq =
∞
∑

i=0

qi

i!
.

13

The sum on the right hand side has a closed form that transforms the above into

eq = exp(q0 + û‖q‖)
= eq0 ⊗ (cos ‖q‖+ û sin ‖q‖) . (23)

The logarithm of q is accordingly defined as

ln q = ln |q|+ û arccos

(

q0
|q|

)

. (24)

The two operations are inverses of each other as we can verify

eln q = eln |q|+û arccos(q0/|q|)

= |q|eû arccos(q0/|q|)

= |q|
(

q0
|q| + û

‖q‖
|q|

)

= q.

B Quaternion Differentiation and Integration

Suppose the quaternion q given in (1) is a function of some variable, say, time t. We can write the
derivative of q(t) as

q̇ = q̇0 + q̇

= q̇0 + q̇1î+ q̇2ĵ + q̇3k̂.

Let p given in (2) be another function of t. It is easy to verify from (3) that the product rule over
differentiation carries over, namely,

d

dt
(p⊗ q) = ṗ⊗ q + p⊗ q̇.

Integration is carried over the four components of a quaternion.
Differentiation gets more complicated when q(t) is a unit quaternion that requires the devotion

of the rest of this section. In this case, the quaternion function q(t) describes how the orientation of
some moving object, represented by its body frame, varies relative to a fixed (world) frame. Let ω(t)
be the angular velocity of the body frame with respect to the world frame. The angular velocity
can be determined from Newton’s equations for dynamics. How to characterize the changing rate
of q(t), that is, its derivative q̇(t)?

Theorem 3 Let q(t) be a unit quaternion function, and ω(t) the angular velocity determined by

q(t). The derivative of q(t) is

q̇ =
1

2
ω ⊗ q. (25)

Proof At t+∆t, the rotation is described by q(t+∆t). This is after some extra rotation during
∆t performed on the frame that has already undergone a rotation described by q(t). This extra

14

rotation is about the instantaneous axis ω̂ = ω/‖ω‖ through the angle ∆θ = ‖ω‖∆t. It can be
described by a quaternion:

∆q = cos
∆θ

2
+ ω̂ sin

∆θ

2

= cos
‖ω‖∆t

2
+ ω̂ sin

‖ω‖∆t

2
. (26)

The rotation at t+∆t is thus described by the quaternion sequence q(t),∆q, implying

q(t+∆t) = ∆q ⊗ q(t). (27)

We are now ready to derive q̇(t). First, let us obtain the difference

q(t+∆t)− q(t) =

(

cos
‖ω‖∆t

2
+ ω̂ sin

‖ω‖∆t

2

)

⊗ q(t)− q(t) (by (26) and (27))

= cos
‖ω‖∆t

2
q(t) + sin

‖ω‖∆t

2
ω̂ ⊗ q(t)− q(t) (by (4))

= −2 sin2 ‖ω‖∆t

4
q(t) + sin

‖ω‖∆t

2
ω̂ ⊗ q(t).

The first term in the last equation above is of higher order than ∆t, thus its ratio to ∆t goes to
zero as the latter does. Hence

q̇(t) = lim
∆t→0

q(t+∆t)− q(t)

∆t

=

(

lim
∆t→0

sin(‖ω‖∆t/2)

∆t

)

ω̂ ⊗ q(t)

=

(

d

dt
sin

(‖ω‖t
2

)

∣

∣

∣

t=0

)

ω̂ ⊗ q(t) (28)

=
‖ω‖
2

ω̂ ⊗ q(t)

=
1

2
ω(t)⊗ q(t). (29)

If q̇ is known , we can recover the angular velocity from (25) by right multiplying its both sides
with q∗:

ω = 2q̇ ⊗ q∗. (30)

The second derivative of the quaternion follows from differentiating (25):

q̈ =
1

2
(ω̇ ⊗ q + ω ⊗ q̇) (31)

=
1

2
ω̇ ⊗ q +

1

4
ω ⊗ ω ⊗ q (by (25))

=

(

−1

4
‖ω‖2 + 1

2
ω̇

)

⊗ q.

15

We can also recover the angular acceleration if the first and second derivatives of q are both known.
This is done by right multiplying (31) with q∗:

ω̇ = 2q̈ ⊗ q∗ −ω ⊗ q̇ ⊗ q∗

= 2q̈ ⊗ q∗ − 2q̇ ⊗ q∗ ⊗ q̇ ⊗ q∗ (by (30))

= 2(q̈ ⊗ q∗ − (q̇ ⊗ q∗)2).

In mechanics, the angular velocity of a rigid body at any time instant is often described with
respect to a fixed frame that instantaneously coincides with its body frame.3 We often say that this
angular velocity is “in terms of” or “expressed in” the body frame. Denoted as ω̃, it is obtained
from ω by rotating the world frame to coincide with the rotating frame determined by q. This
establishes

ω̃ = q∗ ⊗ ω ⊗ q.

Combining (25) with the above, we have another expression of the quaternion derivative:

q̇ =
1

2
q ⊗ ω̃.

The differential equation (25) can be solved via numerical integration. Let h be the time step
size, and denote by qk and ωk the quaternion and angular velocity at the time kh. Euler’s method
approximates the quaternion at the next time step by

qk+1 = qk +
1

2
hωk ⊗ qk.

Due to the increment, the length of qk+1 will be different from unity. It is then normalized:

qk+1 ←
qk+1

‖qk+1‖
.

Euler’s method is of first order and known to be inaccurate due to the truncation error, which
will propagate to the subsequent normalization. Standard integration methods of higher order
such as Adams-Bashforth and Runge-Kutta [11] can be employed. Special integration methods for
quaternions have also been developed, and shown to be more effective. We refer to [14] for a survey
of these methods with performance comparisons.

C Quaternion Interpolation

In computer graphics and animation, there is often a need to interpolate between an object’s initial
orientation (i.e., a rotation of the body frame with respect to the world frame) and final orientation
to generate a smooth rotating motion. Let the the two rotations be represented respectively by the
following two unit quaternions:

r1 = cos
θ1
2

+ û1 sin
θ1
2
,

r2 = cos
θ2
2

+ û2 sin
θ2
2
,

where for i = 1, 2, ûi is a unit vector representing the axis of the ith rotation, and θi the corre-
sponding rotation angle. For interpolation to be meaningful, r1 6= r2 must hold.

3Thus, at a different time instant, the angular velocity is measured in a different fixed frame due to the rotation
of the body frame.

16

C.1 Constant Change Rates in Rotation Axis and Angle

It is easy to interpolate the rotation angle linearly as

θ(τ) = (1− τ)θ1 + τθ2, (32)

where τ ∈ [0, 1]. However, linear interpolation between the unit vectors û1 and û2 would yield the
vector v = (1− τ)û1 + τ û2 that is not unit. If we simply normalize it as w = v/‖v‖, the resulting
curve w(τ) is not constant speed in terms of τ . This is often not desired or visually appealing as
the object may seem to be rotating “unstably” from û1 to û2.

Since û1 and û2 lie on the unit sphere, it is natural to interpolate them using their shortest path
on the sphere. This is the shorter one of the two great arcs connecting û1 and û2, as illustrated in
the figure below.

n

u(τ)

u2

φ

u1

O

Picture a point û(τ) moving at constant speed on this great arc from û1 to û2 as τ increases
from 0 to 1. Essentially, û(τ) is a constant speed parametrization of the arc over [0, 1]. To derive
it, we first construct the normal to the plane:

n̂ =
û1 × û2

‖û1 × û2‖
. (33)

In the case û1 = −û2, we may simply pick the vertical plane containing them. Denoting û1 =
(ux, uy, uz), the vertical plane has the normal

n̂ =
(−uy, ux, 0)
√

u2x + u2y

if u2x + u2y 6= 0, and otherwise n̂ = (1, 0, 0) by choice.
Due to the choice of n̂, the rotation angle φ from û1 to û2 about n̂ is in (0, π]. It can be easily

obtained that
φ = arccos(û1 · û2). (34)

Then the vector û(τ) is determined from a rotation of û1 about n̂ through the angle τφ, as a
quaternion product:

û(τ) =

(

cos
τφ

2
+ n̂ sin

τφ

2

)

û1

(

cos
τφ

2
− n̂ sin

τφ

2

)

.

17

In fact, û has a simpler form not involving quaternion multiplications:

û(τ) =
sin((1− τ)φ)

sinφ
û1 +

sin(τφ)

sinφ
û2. (35)

The correctness of the above expression can be first established for the case that û1 and û2 lie
in the xy-plane, and n̂ is along the z-direction. Let û1 = (cos θ1, sin θ1). Then û2 = (cos(θ1 +
φ), sin(θ1 + φ)). We have

sin((1− τ)φ)

sinφ
û1 +

sin(τφ)

sinφ
û2

=

(

sin((1− τ)φ) cos θ1 + sin(τφ) cos(θ1 + φ)

sinφ
,
sin((1− τ)φ) sin θ1 + sin(τφ) sin(θ1 + φ)

sinφ

)

=

(

sinφ(cos(τφ) cos θ1 − sin(τφ) sin θ1)

sinφ
,
sinφ(cos(τφ) sin θ1 + sin(τφ) cos θ1)

sinφ

)

= (cos(θ1 + τφ), sin(θ1 + τφ))

= û(τ).

If û1 and û2 do not lie in the xy-plane, we rotate n̂ to coincide with the z-axis. Let R be the
corresponding rotation matrix. Then

û(τ) = R−1(Rû)

= R−1

(

sin((1− τ)φ)

sinφ
(Rû1) +

sin(τφ)

sinφ
(Rû2)

)

=
sin((1− τ)φ)

sinφ
û1 +

sin(τφ)

sinφ
û2.

Finally, we can interpolate between r1 and r2 over [0, 1]:

r(τ) = cos
θ(τ)

2
+ û(τ) sin

θ(τ)

2

= cos
(1− τ)θ1 + τθ2

2
+

(

sin((1− τ)φ)

sinφ
û1 +

sin(τφ)

sinφ
û2

)

sin
(1− τ)θ1 + τθ2

2
, (36)

by (32) and (35), where φ is given in (34). The interpolation has constant change rates in both the
rotation angle and the axis.

C.2 Spherical Linear Interpolation

In computer graphics, the widely used algorithm Slerp (spherical linear interpolation) [13] takes
the following form

r(τ) = r1 ⊗ (r∗1 ⊗ r2)
τ , τ ∈ [0, 1], (37)

where the power of a unit quaternion is given by (22).
It has been shown [3] that r(τ) parametrizes the shortest path connecting r1 and r2 on the 3D

unit quaternion sphere in the 4D space. A major appeal is that interpolation is carried out as a
rotation about a fixed axis at constant angular velocity.

18

D Differentiation With Respect to a Quaternion

Sometimes we need to perform differentiation with respect to a quaternion q = q0 + q, where
q = (q1, q2, q3). In this context, the quaternion shall be viewed as a column vector (q0, q1, q2, q3)

⊤,
just like all other vectors (unless specifically mentioned to be row vectors).

It easily follows that

∂(u× v)

∂v
= [u]×,

∂(u× v)

∂u
= −∂(v × u)

∂u
= −[v]×,

where the operator [·]× is defined in (11).
We start with the product of two quaternions p = p0 + p and q = q0 + q, given in (3). These

quaternions are now viewed as column vectors (p0, p1, p2, p3)
⊤ and (q0, q1, q2, q3)

⊤, respectively. The
derivative of p⊗ q with respect to p is a 4× 4 matrix:

∂(p⊗ q)

∂p
=

∂

∂p

(

p0q0 − p · q
p0q + q0p+ p× q

)

=

(

q0 −q⊤
q q0I3 − [q]×

)

, (38)

where I3 is the 3× 3 identity matrix. The partial derivative of p ⊗ q∗ with respect to p is derived
from replacing q with −q in the above:

∂(p ⊗ q∗)

∂p
=

(

q0 q⊤

−q q0I3 + [q]×

)

. (39)

Similarly, the partial derivative of the product p⊗ q with respect to q is given below:

∂(p⊗ q)

∂q
=

(

p0 −p⊤

p p0I3 + [p]×

)

(40)

Also, the partial derivative of the product p⊗ q∗ with respect to q is

∂(p⊗ q∗)

∂q
=

∂

∂q

(

p0q0 + p · q
−p0q + q0p− p× q

)

=

(

p0 p⊤

p −p0I3 − [p]×

)

. (41)

In each of the derivatives (38) and (40), let the non-differentiated quaternion be a pure quater-
nion v, that is, a vector, and name the other quaternion q always. Then the derivatives reduce to
the following:

∂(q ⊗ v)

∂q
=

(

0 −v⊤

v −[v]×

)

, (42)

∂(v ⊗ q)

∂q
=

(

0 −v⊤

v [v]×

)

. (43)

19

Alternatively, in (38) and (40), we let the differentiated quaternion be a vector. The derivatives
becomes two 4× 3 matrices:

∂(v ⊗ q)

∂v
=

(

−q⊤

q0I3 − [q]×

)

, (44)

∂(q ⊗ v)

∂v
=

(

−q⊤

q0I3 + [q]×

)

. (45)

At last, we look at the derivatives of the product q ⊗ v ⊗ q∗ respectively with respect to the
unit quaternion q and the vector v. The product gives the vector that results from performing
a rotation represented by q on v. The form is given in (7). Differentiation with respect to v is
straightforward since the product is linear in v:

∂(q ⊗ v ⊗ q∗)

∂v
=
(

q20 − ‖q‖2
)

I3 + 2qq⊤ + 2q0[q]×, (46)

and

∂(q∗ ⊗ v ⊗ q)

∂v
=

∂ (q∗ ⊗ v ⊗ (q∗)∗)

∂v
(47)

=
(

q20 − ‖q‖2
)

I3 + 2qq⊤ − 2q0[q]×. (48)

Meanwhile, the product is quadratic in q. Let us first obtain the following derivatives:

∂(‖q‖2v)
∂q

=
∂
(

vq⊤q
)

∂q

= 2vq⊤,

∂((q · v)q)
∂q

=
∂
(

(v⊤q)q
)

∂q

= v⊤qI3 + qv⊤.

Now, differentiate (7) and substitute the above derivatives in. After some cleanup, the derivative
of the rotated vector with respect to the rotation is as below:

∂(q ⊗ v ⊗ q∗)

∂q
= 2

(

q0v + q × v, −vq⊤ + (v · q)I3 + qv⊤ − q0[v]×

)

. (49)

References

[1] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE Transactions on

pattern analysis and machine intelligence, 14(2):239–256, 1992.

[2] W. K. Clifford. Preliminary sketch of bi-quaternions. Proceedings of the London Mathematical

Society, s1–4(1):381–395, 1873.

[3] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation, and animation.
http://web.mit.edu/2.998/www/QuaternionReport1.pdf.

[4] O. D. Faugeras and M. Hebert. The representation, recognition, and locating of 3-D objects.
International Journal of Robotics Research, 5(3):27–52, 1986.

20

[5] W. R. Hamilton. On quaternions; or on a new system of imagniaries in algebra. London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25(3):489–495, 1844.

[6] B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal

of Optical Society of America A, 4(4):629–642, 1987.

[7] T. W. Hungerford. Algebra. Springer-Verlag, 1974.

[8] N. Jacobson. Basic Algebra. W. H. Freeman & Co.,1985.

[9] J. B. Kuipers. Quaternions and Rotation Sequences. Princeton University Press, 1999.

[10] S. Oldenburger. Applications of Quaternions. Written project of the course “Problem Solving
Techniques in Applied Computer Science” (Com S 477/577), Department of Computer Science,
Iowa State University, 2005.

[11] W. H. Press, S. A. Teukolsky, W. T.Vetterling, and B. P. Flannery. Numerical Recipies in C,
2nd edition. Cambridge University Press, Inc., 2002.

[12] J. T. Schwartz and M. Sharir. Identification of partially obscured objects in two and three di-

mensions by matching noisy characteristic curves. International Journal of Robotics Research,
6(2):29–44, 1987.

[13] K. Shoemake. Animating rotation with quaternion curves. Computer Graphics, 19(3):245–254,
1985.

[14] F. Zhao and B. G. M. van Wachem. A novel quaternion integration approach for describing
the behaviour of non-spherical particles. Acta Mechanica, 224:3091–3109, 2013.

21

