Solution of Linear Equations
(Com S 477/577 Notes)
Yan-Bin Jia
Sep 7, 2017

We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations. A subclass of the latter comprises all the systems of linear equations to which the area of linear algebra is devoted. In fact, many a problem in numerical analysis can be reduced to one of solving a system of linear equations. We already witnessed this in the use of Newton’s method to solve a system of nonlinear equations. Other applications include solution of ordinary or partial differential equations (ODEs or PDEs), the eigenvalue problems of mathematical analysis, least-squares fitting of data, and polynomial approximation.

1 Elements of Linear Algebra

Recall that a basis for a vector space is a sequence of vectors that are linearly independent and span the space. Given a linear function \(f : \mathbb{R}^n \to \mathbb{R}^m \), and a pair of bases as below:

\[
B_1 = \{e_1, e_2, \ldots, e_n\}, \quad \text{for } \mathbb{R}^n,
\]
\[
B_2 = \{d_1, d_2, \ldots, d_m\}, \quad \text{for } \mathbb{R}^m,
\]

we can represent \(f \) by an \(m \times n \) matrix \(A \) such that \(f(x) = Ax \) for any \(x \in \mathbb{R}^n \). Note that the matrix \(A \) depends on the choices of the bases \(B_1 \) and \(B_2 \).

The rank \(r \) of an \(m \times n \) matrix \(A \) is the number of independent rows. The column space of \(A \), denoted \(\text{col}(A) \), consists of all the linear combinations of its columns. The row space of \(A \), denoted \(\text{row}(A) \), consists of all the linear combinations of its rows. Since each column has \(m \) components, the column space of \(A \) is a subspace of \(\mathbb{R}^m \). It consists of all the points in \(\mathbb{R}^m \) that are image vectors under the mapping \(A \). Similarly, the row space is a subspace of \(\mathbb{R}^n \).

The null space \(\text{null}(A) \) of the matrix is made up of all the solutions to \(Ax = 0 \), where \(x \in \mathbb{R}^n \).

Theorem 1 (Fundamental Theorem of Linear Algebra) Let \(A \) be an \(m \times n \) matrix. Both its row and column spaces have dimension \(r \). Its null space has dimension \(n - r \) and is the orthogonal complement of its row space (in \(\mathbb{R}^n \)). In other words,

\[
\mathbb{R}^n = \text{row}(A) \bigoplus \text{null}(A),
\]

\[
n = \dim(\text{row}(A)) + \dim(\text{null}(A)).
\]

Consider the system of equations

\(Ax = b \).
If \(b \) is not an element of \(\text{col}(A) \), then the system is inconsistent (or overdetermined). If \(b \in \text{col}(A) \) and \(\text{null}(A) \) is non-trivial, then we say that the system is underdetermined. In this case, every solution \(x \) can be split into a row space component \(x_r \) and a null space component \(x_n \) so that

\[
Ax = A(x_r + x_n) = Ax_r + Ax_n = Ax_r.
\]

The null space goes to zero, \(Ax_n = 0 \), while the row space component goes to the column space, \(Ax_r = Ax \).

If \(A \) is an \(n \times n \) square matrix, we say that \(A \) is singular

iff \(\det(A) = 0 \)
iff \(\text{rank}(A) < n \)
iff the rows of \(A \) are not linearly independent
iff the columns of \(A \) are not linearly independent
iff the dimension of the null space of \(A \) is non-zero
iff \(A \) is not invertible.

2 LU Decomposition

An \(m \times n \) matrix \(A \), where \(m \geq n \), can be written in the form

\[
PA = LDU,
\]

where

\(P \) is an \(m \times m \) permutation matrix that specifies row interchanges,
\(L \) is an \(m \times m \) square lower-triangular matrix with 1’s on the diagonal,
\(U \) is an \(m \times n \) upper-triangular matrix with 1’s on the diagonal,
\(D \) is an \(m \times m \) square diagonal matrix.

1. The entries on the diagonal of \(D \) are called “pivots” (named after the Gaussian elimination procedure).

2. When \(A \) is a square matrix, the product of the pivots is equal to \(\pm \det(A) \), where the sign “−” is chosen if odd number of row interchanges are performed and the sign “+” is chosen otherwise.

3. If \(A \) is symmetric and \(P = I \), the identity matrix, then \(U = L^T \).

4. If \(A \) is symmetric and positive definite, then \(U = L^T \) and the diagonal entries of \(D \) are strictly positive.
Example 3.

\[
\begin{pmatrix}
1 & 0 \\
1 & 1 \\
0 & -1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
1 & 1 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix};
\]

\[
\begin{pmatrix}
1 & 1 & 0 \\
2 & 1 & -1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}.
\]

Like most other decompositions and factorizations, the \(LU \) (or \(LDU \)) decomposition is used to simplify the solution of the system

\[Ax = b. \]

Suppose \(A \) is square and non-singular, solving the above system is equivalent to solving

\[\text{LDU} \, x = \text{P} \, b. \]

We then first solve

\[Ly = P \, b \]

for the vector \(y \) and then solve

\[U \, x = D^{-1} \, y, \]

for the vector \(x \). Each of the above systems can be solved easily using forward or backward substitution.

2.1 Crout’s Algorithm

The \(LU \) decomposition for an \(n \times n \) square matrix \(A \) can be generated directly by Gaussian elimination. Nevertheless, a more efficient procedure is Crout’s algorithm. In case no pivoting is needed, the algorithm yields two matrices \(L = \{l_{ij}\} \) and \(U = \{u_{ij}\} \) whose product is \(A = \{a_{ij}\} \), namely,

\[
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
l_{21} & 1 & 0 & \cdots & 0 \\
l_{31} & l_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l_{n1} & l_{n2} & l_{n3} & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\
u_{21} & u_{22} & u_{23} & \cdots & u_{2n} \\
u_{31} & u_{32} & u_{33} & \cdots & u_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
u_{n1} & u_{n2} & u_{n3} & \cdots & u_{nn}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{pmatrix}.
\]

The algorithm solves for \(L \) and \(U \) simultaneously and column by column.\(^1\) At the \(j \)th outer iteration step, it generates column \(j \) of \(U \) and then column \(j \) of \(L \).

\[
\text{for } j = 1, 2, \ldots, n \text{ do}
\]

\[
\text{for } i = 1, 2, \ldots, j \text{ do}
\]

\[
u_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}
\]

\[
\text{for } i = j + 1, j + 2, \ldots, n \text{ do}
\]

\[
l_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right)
\]

\(^1\)You can also do it row by row except row \(i \) of \(L \) has to be determined before row \(i \) of \(U \).
If you work through a few iterations of the above procedure, you will see that the α’s and β’s that occur on the right-hand side of the two equations in the procedure are already determined by the time they are needed. And every a_{ij} is used only once and never again. Together these entries are used column by column as well. For compactness, we can store l_{ij} and u_{ij} in the location a_{ij} used to occupy, namely,

$$
\begin{bmatrix}
 u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\
 l_{21} & u_{22} & u_{23} & \cdots & u_{2n} \\
 l_{31} & l_{32} & u_{33} & \cdots & u_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 l_{n1} & l_{n2} & l_{n3} & \cdots & u_{nn}
\end{bmatrix}
$$

Looking at step 5 of Crout’s algorithm, we should be worried about the possibility of u_{jj} becoming zero. Here is an example from [2, p. 97] showing a matrix with no LU decomposition due to this degeneracy. Suppose

$$
\begin{pmatrix}
 1 & 2 & 3 \\
 2 & 4 & 7 \\
 3 & 5 & 3
\end{pmatrix}
=
\begin{pmatrix}
 1 & 0 & 0 \\
 l_{21} & 1 & 0 \\
 l_{31} & l_{32} & 1
\end{pmatrix}
\begin{pmatrix}
 u_{11} & u_{12} & u_{13} \\
 0 & u_{22} & u_{23} \\
 0 & 0 & u_{33}
\end{pmatrix}
$$

We must have $u_{11} = 1$, $l_{21} = 2$, $l_{31} = 3$, $u_{12} = 2$, and $u_{22} = 0$. The (3, 2) entry determined from the product matrix on the right hand side is

$$l_{31}u_{12} + l_{32}u_{22} = 6.$$

It is not equal to the (3, 2) entry (value 5) of the original matrix! The contradiction arises because $u_{22} = 0$. In fact, we would not even be able to continue Crout’s algorithm to calculate l_{32} via a division by 0.

Theorem 2 An $n \times n$ matrix A has an LU factorization if $\det(A_i) \neq 0$, where A_i is the upper left $i \times i$ submatrix, for $i = 1, \ldots, n - 1$. If the LU factorization exists and $\det(A) \neq 0$, then it is unique.

For numerical stability, pivoting should be performed in Crout’s algorithm. The key point is to notice that the first equation in the procedure for u_{ij} is exactly the same as the second equation for l_{ij} except for the division in the latter equation. This means that we can choose the largest $a_{ij} - \sum_{k=1}^{j-1} a_{ik}u_{kj}$, $i = j, \ldots, n$ as the diagonal element u_{jj} and switch corresponding rows in L and A.

Example 4. To illustrate on pivoting, let us carry out a few steps of Crout’s algorithm on the matrix

$$
\begin{pmatrix}
 2 & -7 & 6 & 5 \\
 4 & 8 & -10 & 3 \\
 9 & -6 & -4 & 2 \\
 5 & 1 & 3 & 3
\end{pmatrix}
$$

4
In the first step, we need to determine \(u_{11} \). Which of rows 1, 2, 3, 4 would result in the largest (absolute) value of \(u_{11} \)?

- If row 1: \(1 \cdot u_{11} = 2 \rightarrow u_{11} = 2 \),
- If row 2: \(1 \cdot u_{11} = 4 \rightarrow u_{11} = 4 \),
- If row 3: \(1 \cdot u_{11} = 9 \rightarrow u_{11} = 9 \),
- If row 2: \(1 \cdot u_{11} = 5 \rightarrow u_{11} = 5 \).

Thus we set \(u_{11} = 9 \) and exchange rows 1 and 3 in \(A \):

\[
\begin{pmatrix}
9 & -6 & -4 & 2 \\
4 & 8 & -10 & 3 \\
2 & -7 & 6 & 5 \\
5 & 1 & 3 & 3
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & -7 & 6 & 5 \\
4 & 8 & -10 & 3 \\
9 & -6 & -4 & 2 \\
5 & 1 & 3 & 3
\end{pmatrix},
\]

where the first matrix on the right hand side is a permutation matrix which exchanges rows 1 and 3 of the second (original) matrix via multiplication. In the second step, we use the first column to determine that \(l_{21} = \frac{4}{9} \), \(l_{31} = \frac{2}{9} \), and \(l_{41} = \frac{5}{9} \).

Next, we let \(u_{12} = a_{12} = -6 \) and matrices \(L \) and \(U \) take the form

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
\frac{4}{9} & 0 & 0 & 0 \\
\frac{2}{9} & \frac{5}{9} & 0 & 0 \\
\frac{4}{9} & \frac{2}{9} & \frac{5}{9} & 0
\end{pmatrix}
\begin{pmatrix}
9 & -6 & \cdot \\
0 & u_{22} & \cdot \\
0 & 0 & \cdot \\
0 & 0 & \cdot
\end{pmatrix}.
\]

To determine \(u_{22} \), we find out which of rows 2, 3, 4 would result in the largest \(u_{22} \) value:

- If row 2: \(\frac{4}{9} \cdot (-6) + u_{22} = 8 \rightarrow u_{22} = \frac{32}{3} \),
- If row 3: \(\frac{2}{9} \cdot (-6) + u_{22} = -7 \rightarrow u_{22} = -\frac{17}{3} \),
- If row 4: \(\frac{5}{9} \cdot (-6) + u_{22} = 1 \rightarrow u_{22} = \frac{13}{3} \).

Since row 2 yields the largest absolute value of \(u_{22} \), we set \(u_{22} = \frac{32}{3} \). Using \(u_{22} \), we obtain the second column of \(L \):

\[
l_{32} = -\frac{17}{32} \quad \text{and} \quad l_{42} = \frac{13}{32}.
\]

By this time, we have

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
\frac{4}{9} & 1 & 0 & 0 \\
\frac{2}{9} & \frac{5}{9} & \frac{17}{32} & 0 \\
\frac{4}{9} & \frac{2}{9} & \frac{5}{9} & 0
\end{pmatrix}
\begin{pmatrix}
9 & -6 & \frac{32}{3} \\
0 & \frac{32}{3} & \cdot \\
0 & 0 & \cdot \\
0 & 0 & \cdot
\end{pmatrix} = \begin{pmatrix}
9 & -6 & -4 & 2 \\
4 & 8 & -10 & 3 \\
2 & -7 & 6 & 5 \\
5 & 1 & 3 & 3
\end{pmatrix}.
\]

3 Factorization Based on Eigenvalues

Suppose the \(n \times n \) matrix \(A \) has \(n \) linearly independent eigenvectors, then

\[A = SAS^{-1}, \]
where Λ is a diagonal matrix whose entries are the eigenvalues of A and S is an eigenvector matrix whose columns are the eigenvectors of A.

When the eigenvalues of A are all different, it is automatic that the eigenvectors are independent. Therefore A can be diagonalized.

Every $n \times n$ matrix can be decomposed into the Jordan form, that is,

$$ A = MJM^{-1}, $$

where

$$ J = \begin{pmatrix} J_1 & & \\ & \ddots & \\ & & J_s \end{pmatrix}, \quad J_i = \begin{pmatrix} \lambda_i & 1 \\ & \ddots & \ddots \\ & & 1 \end{pmatrix}, \quad 1 \leq i \leq s, $$

with λ_i an eigenvalue of A. Here s is the number of independent eigenvectors of A and M consists of eigenvectors and “generalized” eigenvectors.

4 QR Factorization

Suppose A is an $m \times n$ matrix with independent columns (hence $m \geq n$). We can factor A as

$$ A = QR, $$

Here Q with dimensions $m \times n$ has the same column space as A but its columns are orthonormal vectors. In other words, $Q^TQ = I$. And R with dimensions $n \times n$ is invertible and upper triangular.

The first application is the “QR algorithm” which repeatedly produces QR factorizations of matrices derived from A, building the eigenvalues of A in the process.

The second application is in the solution of an overconstrained system $Ax = b$ in the least-squares sense. The least-squares solution \bar{x} is given by $\bar{x} = (A^TA)^{-1}A^Tb$, assuming that the columns of A are independent. But $Q^TQ = I$, so

$$ \bar{x} = (R^TQ^TQR)^{-1}R^TQ^Tb $$

$$ = (R^TR)^{-1}R^TQ^Tb $$

$$ = R^{-1}(R^T)^{-1}R^TQ^Tb $$

$$ = R^{-1}Q^Tb. $$

So we can obtain x by computing Q^Tb and then using backsubstitution to solve $Rx = Q^Tb$. This is numerically more stable than solving the system $A^TA\bar{x} = A^Tb$.

The QR factorization can be be computed using the Gram-Schmidt process.

4.1 The Gram-Schmidt Procedure

Given n linearly independent vectors v_1, \ldots, v_n, the Gram-Schmidt procedure constructs n orthonormal vectors $\hat{u}_1, \ldots, \hat{u}_n$ such that these two sets of vectors span the same space. First, it constructs n orthogonal vectors w_1, \ldots, w_n below:

$$ w_1 = v_1, \quad j = 1, \ldots, n, $$

$$ w_j = v_j - \sum_{i=1}^{j-1} \frac{v_j^T w_i}{w_i^T w_i} w_i, \quad j = 2, \ldots, n. $$
Essentially, we subtract from every new vector \(v_j \) its projection in the directions \(w_1/\|w_1\|, \ldots, w_{i-1}/\|w_{i-1}\| \) that are already set. Next, we simply perform a normalization by letting

\[
\hat{u}_j = \frac{w_j}{\|w_j\|}, \quad j = 1, \ldots, n.
\]

Example 5. Consider three vectors:

\[v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, \quad \text{and} \quad v_3 = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}. \]

Carry out the Gram-Schmidt procedure as follows:

\[
w_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},
\]

\[
w_2 = v_2 - \frac{v_2^T w_1}{w_1^T w_1} w_1
\]

\[= \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix},
\]

\[
w_3 = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix} - \frac{6}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \frac{6}{6} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.
\]

Hence the orthonormal basis consists of vectors

\[
\hat{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \hat{u}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \quad \text{and} \quad \hat{u}_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.
\]

4.2 Generating the QR Factorization

To obtain the QR factorization, we first use Gram-Schmidt to orthogonalize the columns of \(A \). The resulting orthonormal vectors constitute the columns of \(Q \), that is, \(Q = (\hat{u}_1, \hat{u}_2, \ldots, \hat{u}_n) \). The matrix \(R \) is formed by keeping track of the Gram-Schmidt operations. Then, \(R \) expresses the columns of \(A \) as linear combinations of the columns of \(Q \).
More specifically, we rewrite (1) and (2) into the following:

\[v_j = \sum_{i=1}^{j-1} s_{ij} w_i + w_j, \quad j = 1, \ldots, n, \]

where \(s_{ij} = \frac{(v_j^T w_i)}{(w_i^T w_i)}, \) \(1 \leq i \leq j - 1, \) have already been calculated by the Gram-Schmidt procedure. The above equations are further rewritten as

\[v_j = \sum_{i=1}^{j-1} s_{ij} \|w_i\| \hat{u}_i + \|w_j\| \hat{u}_j = \sum_{i=1}^{n} r_{ij} \hat{u}_i, \]

where

\[r_{ij} = \begin{cases} s_{ij} \|w_i\| & \text{if } 1 \leq i < j, \\ \|w_j\| & \text{if } i = j, \\ 0 & \text{if } i > j. \end{cases} \]

From \(A = QR \) we see that \(R = (r_{ij}). \)

Example 6. In the last example, we notice that

\[
\begin{align*}
 v_1 &= w_1 = \sqrt{2} \hat{u}_1, \\
 v_2 &= w_1 + w_2 = \sqrt{2} \hat{u}_1 + \sqrt{6} \hat{u}_2, \\
 v_3 &= 3w_1 - w_2 + w_3 = 3\sqrt{2} \hat{u}_1 - \sqrt{6} \hat{u}_2 + \sqrt{3} \hat{u}_3.
\end{align*}
\]

So the QR decomposition is given by

\[
\begin{pmatrix}
 1 & 2 & 3 \\
-1 & 0 & -3 \\
0 & -2 & 3
\end{pmatrix}
= \begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
\sqrt{2} & \sqrt{2} & 3\sqrt{2} \\
\sqrt{2} & -\sqrt{6} & -\sqrt{3} \\
0 & 0 & \sqrt{3}
\end{pmatrix}.
\]

References

