An axiomatic definition of pattern is given. The concepts of "generalized portrait", "distinction", and "recognition" are introduced. Algorithms are proposed for learning recognition and distinction on the basis of finding generalized portraits of patterns.

A number of studies have appeared in recent years on the subject of modelling pattern recognition processes [1-3]. A number of effective algorithms have been proposed for learning to distinguish visual patterns in special-purpose or universal digital computers. The posing of these problems and the results obtained constitute an important stage in the development of self-organizing systems.

In the present paper an attempt is made to formalize certain concepts connected with pattern recognition. The authors start from the principle that a pattern is defined by the objective properties of the set of objects under consideration and the subjective properties of the machine perceiving them.

This approach has permitted us to introduce the concept of "generalized portrait" and threshold of recognition, the ensemble of which characterizes the system of machine patterns, and to show that the problem of pattern recognition in general consists of the two subsidiary problems of recognizing and distinguishing patterns.

Let us consider a machine consisting of a perception device PD, a transformation device TD and a recognition device RD (Fig. 1). We shall term the state of its perception device the image ϕ_i of the ith object presented to the machine, and the outputs f_j of the conversion device we term the description of the object. The following considerations are based on the definition of the concept "pattern".

Let there exist a certain set of objects H. We shall assume that the set of their images for the machine can be divided into π patterns if the set of objects H can be divided into π subsets H_1, \ldots, H_{π}, such that after a certain sufficient number of objects of each subset has been shown to the machine, it can divide the entire set H into the same subsets H_1, \ldots, H_{π}. It is assumed that for each of these subsets H_1, \ldots, H_{π} there exists a description permitting an estimate of the degree of correspondence to it of the descriptions of each object.

The unique assignment of an object to a subset is then possible when, if the descriptions of two objects belonging to different subsets are compared to the description of one of the subsets, a larger value of the estimation parameter is obtained for the description of the object which belongs to that subset.

![Diagram](Fig. 1)

1. **Definition of pattern**

Let there exist a set of images T. We shall consider a certain subset of the images $\Phi \subset T$ and a certain single-valued transformation $\mathcal{F} \in U$, where U is a given set of single-valued transformations, each of which places in correspondence with each image $\phi \in \Phi$ a point on the unit sphere in Hilbert space.

We shall say that the set of images decomposes into π patterns if the set Φ can be divided into π subsets $\Phi_1, \ldots, \Phi_{\pi}$ such that the corresponding subset of points on the sphere F_1, \ldots, F_{π} has the following property.
For each subset \(F_1 \) a point on the sphere \(\Phi_1 \) can be found such that for any \(f_i \in F_1, f_j \in F_1 \) the inequalities
\[
(f_i \Phi_1 > (f_j \Phi_1) \quad (i \neq j)
\]
is satisfied.

If the set \(\Phi \) is such that there does not exist an image \(\Phi \in T \setminus \Phi \), whose corresponding point \(f^* \) satisfies the inequalities
\[
(f^* \Phi_1 > \min_j (f_j \Phi_1), (f^* \Phi_1 < \min_j (f_j \Phi_1) \quad (i \neq j),
\]
we shall say that the images \(\Phi \) divide into defined patterns *\(\Phi_1, \ldots, \Phi_n \). In the contrary case we say that the images belong to the indefinite patterns *\(\Phi_1, \ldots, \Phi_n \).

We shall say that the images \(\Phi \) do not divide into \(n \) patterns if in the given set of transformations \(U \) there is no transformation on the sphere \(F \), for which condition (1) is satisfied*.

It is obvious that several transformations may be found for which conditions (1) are satisfied.

We shall say that the transformation \(F_1 \in U \) is similar to the transformation \(F_2 \in U \) and write \(F_1 \rightarrow F_2 \), if each set \(\Phi \), dividing into \(n \) patterns *\(\Phi_1, \ldots, \Phi_n \) under the transformation \(F_1 \), can be decomposed into the same \(n \) patterns *\(\Phi_1, \ldots, \Phi_n \) under the transformation \(F_2 \). The set of patterns *\(\Phi_1, \ldots, \Phi_n \) into which a given set of images *\(\Phi_1, \ldots, \Phi_n \) decomposes under the transformation \(F \), will be termed a system of \(F \)-homogeneous patterns, and will be denoted by \([F_1 \Phi]\).

2. Recognition and Distinction

Let us consider a system of \(F \)-homogeneous patterns \([F_1 \Phi]\). Let the patterns of this system be *\(\Phi_1, \ldots, \Phi_n \). To the subset of images \(F_1 \) under the transformation \(F_1 \) let there correspond the subsets of points on the sphere \(F_1, \ldots, F_n \).

We shall consider a certain image \(\Phi \in T \) and the point \(f \) corresponding to it. We call the establishment of the membership of \(f \) in the subset \(F_1 \) pattern recognition if it is known in advance that the image \(\Phi \) belongs to the set \(\Phi \). In the contrary case establishment of the membership of the point \(f \) in one of the subsets \(F_1, \ldots, F_n \) is termed pattern recognition. The recognition problem can be defined also for a set of indefinite patterns. The following geometric interpretations of recognition and distinction can be proposed.

Conditions (1) may be written in the form \((j, q_j) \geq C_j \), where \(C = \min_j (f_j \Phi_1) \). This signifies that in some functional space in the sphere with center at the point \(\Phi_1 \) and radius \(R_1 \) no description of an object belonging to pattern *\(\Phi_j \) (i.e., \(i \neq j \)) can occur.

In the case of distinction incidence in the sphere is sufficient for recognition of the pattern. However the mutual dispositions of the spheres may be such that certain of them may intersect (Fig. 2). The portion of the points belonging simultaneously to two spheres cannot be recognized by inequalities (1) (i.e., these points are not images belonging to the sample).

If it is not known in advance if the given image belongs to one of the \(n \) patterns, incidence of its description within one of the spheres is not sufficient for recognition. It is further necessary to determine if the description of the object is incident within a single sphere only.

Let us consider the conditions
\[
(f_i \Phi_1 > (f_j \Phi_1, (f_j \Phi_1 > (f_i \Phi_1).
\]

We term \(k_i = \min_j (f_j \Phi_1) \) the recognition threshold of the pattern *\(\Phi_i \), and correspondingly \(k_j = \min_j (f_j \Phi_1) \) the recognition threshold of the pattern *\(\Phi_j \).

Let the system of \(F \)-homogeneous patterns \([F_1 \Phi]\) be such that the definite patterns composing it are

*This definition of pattern can be given in metric space, replacing conditions (1) by the conditions \(p(f, \Phi_i) < p(f, \Phi_j) \).
\(\Phi_1, \ldots, \Phi_n \) (a subset of all images belonging to the patterns \(\Phi_1, \ldots, \Phi_n \) and the corresponding subset of points on the sphere \(\mathbb{S} \)).

According to the definition of pattern, for each subset there exists a certain point of the sphere \(\mathbb{S}_k \). We term this point on the sphere \(\mathbb{S}_k \) the generalized portrait of the pattern \(\Phi_k \).

![Fig. 2.](image)

It is obvious that the generalized portraits of the patterns \(\Phi_1, \ldots, \Phi_n \) and the set of their recognition thresholds \(k_1, \ldots, k_n \) fully characterize such a system of \(\mathbb{S} \)-homogeneous patterns.

Let \(k_1 > 0, \ldots, k_n > 0 \); we put \(s_i = (1/k_i) \Phi_i \). The inequalities (1) may be rewritten in the form

\[
\langle f(s_i) \rangle > 1 > \langle f(s_j) \rangle, \quad \langle f(s_i) \rangle > 1 > \langle f(s_j) \rangle,
\]

whence

\[
\langle f(s_i) \rangle > \langle f(s_j) \rangle.
\]

The last inequality can be taken as the condition for distinguishing the patterns \(\Phi_1, \ldots, \Phi_n \) of the system \(\{ \mathbb{S}_i (\Phi) \} \).

If a certain object \(f_j \) does not belong to any of the patterns, \(F(\Phi) \) can be estimated from the quantity \(\Phi_1 \), and it can be assigned to that pattern \((f_j, s_j) \) for which the value \(\Phi_k \) is maximum.

Let us put \(\gamma(f(s_j)) = \chi_1^{k_l} \),

\[
\gamma(f(s_j)) = \begin{cases} 0 & \text{for } z < 1, \\ 1 & \text{for } z \geq 1. \end{cases}
\]

Here the upper index indicates the index of the system of \(\mathbb{S} \)-homogeneous patterns containing the sample \(\Phi_1 \). Then the condition for recognizing the pattern \(\Phi_i \) consists in determining such \(\chi_1^{k_l} \), that

\[
\frac{1}{x_1} \ldots \frac{1}{x_i} x_i^{k_l} \frac{1}{x_i} \ldots \frac{1}{x_i} = 1.
\]

The existence of this requirement indicates that the operation of recognition does not terminate after the recognition threshold has been passed, while the operation of distinguishing terminates with passage of the threshold.

Thus, to determine the membership of some image in a pattern, it is necessary to:

1) compare the description of the object presented to all the generalized portraits of the homogeneous systems in the memory;

2) put out the signal of passage of the threshold;

It should be kept in mind, that with increase of learning (i.e., with increase in the number of patterns entering into the \(\mathbb{S} \)-homogeneous system) patterns can be redefined. However at each given stage there exists its corresponding system of true \(\mathbb{S} \)-homogeneous patterns.

Thus, it is likely that a person ignorant of the Latin alphabet will term the image in Fig. 3 the letter O. A person who knows the Latin alphabet, on being asked what the drawing represents, will probably answer: "I don't know."
3) verify if requirement (2) has been satisfied in the case of recognition.

It is useful to introduce one further definition. We term the order of distinguishability of two patterns \(\Phi_j \) and \(\Phi_i \) the quantity \(I = 1 - (\Phi_i \Phi_j) \), and the order of distinguishability of the system of \(F_i \)-homogeneous patterns

\[
I = 1 - \max_{i,j} (\sigma_i \sigma_j),
\]

where \(\sigma_i \), \(\sigma_j \) are the generalized portraits of the system \(\{ F_i (\Phi) \} \). It is possible to consider the order of distinguishability as the characteristic degree of similarity of the patterns in the system of homogeneous patterns.

2. One Representation

As a specific representation we shall consider the excitation of the receptor field, i.e., a certain sequence \(\alpha_1, \ldots, \alpha_n \), where \(0 \leq \alpha \leq 1 \).

Let us consider the set of transformations \(U \) over the receptor field. Each transformation \(F_{ik} \in U \) puts into correspondence with the sequence \(\alpha_1, \ldots, \alpha_n \) a certain unit vector.

Assume that by means of the transformation \(F_{ik} \) to the sequence \(\alpha_1, \ldots, \alpha_n \) is placed in correspondence the unit vector \((\beta_1, \ldots, \beta_n) \), and by means of the transformation \(F_{ik} \) to the same sequence \(\alpha_1, \ldots, \alpha_n \) is placed in correspondence the unit vector \((\gamma_1, \ldots, \gamma_n) \).

We define a certain transformation \(F_{ik+i} \) as the "sum" of transformations \(F_{ik+1e} = F_{ik} \oplus F_{ik}i \):

\[
F_{ik+i}(\alpha_1, \ldots, \alpha_n) = F_{ik}(\alpha_1, \ldots, \alpha_n) \oplus F_{ik}(\alpha_1, \ldots, \alpha_n) = (c_{ik+i}, \ldots, c_{ik+in}),
\]

where we define the operation "multiplication by a number":

\[
F(\alpha_1, \ldots, \alpha_n) = (c_{ik+i}, \ldots, c_{ik+in}) = (\gamma_1, \ldots, \gamma_n).
\]

These operations are neither commutative nor associative, but any transformation \(F_{ik+i} \) can always be represented as

\[
F_{ik+i} = c_{ik+i} F_{ik} \oplus c_{ik+i} F_{ik} \oplus c_{ik+i} F_{ik}.
\]

It is easily shown that this transformation \(F_i = c_{ik+i} F_{ik} \oplus \ldots \oplus c_{ik+i} F_{ik} \) is similar to an arbitrary transformation

\[
F_{ik} \subset U^k (k = 1, 2, \ldots, n), \quad F_{ik} \rightarrow F_i.
\]

In the transformation \(F_{ik} \) let a certain set of images \(\Phi \) divide into the patterns \(\Phi_1, \ldots, \Phi_n \), whose generalized portraits are \(\sigma_1, \ldots, \sigma_n \).

Let us consider two images. Image \(a \), belonging to pattern \(\Phi_1 \), and image \(b \), not belonging to pattern \(\Phi_1 \).

Let in the transformation \(F_{ik} \) their vectors and the generalized portrait of the pattern \(\Phi_1 \) take the forms

\[
F_{ik}(a) = f_1 = (d_1, \ldots, d_n), \quad F_{ik}(b) = f_2 = (e_1, \ldots, e_n), \quad \sigma = (v_1, \ldots, v_n).
\]

Conditions (1) for these vectors take the form

\[
\sum d_i v_i > \sum e_i v_i.
\]

These same images in the transformation \(F_i \) will be
\[F^* (a) = f_1^* = (c_1 d_1, \ldots, c_1 d_n, c_2 d_1, \ldots, c_2 d_n, \ldots, c_m d_1, \ldots, c_m d_n), \]

\[F^* (b) = f_2^* = (c_1 e_1, \ldots, c_1 e_n, c_2 e_1, \ldots, c_2 e_n, \ldots, c_m e_1, \ldots, c_m e_n). \]

Let us consider the vector \(q^1 = (v_1, \ldots, v_n, 0, \ldots, 0) \). Then

\[(f_1^* q^1) = c_1 \sum d(v_i), \quad (f_2^* q^1) = c_1 \sum e(v_i) \]

and the inequality \((f_1^* q^1) > (f_2^* q^1)\) follows from inequality (A). Let \(F_1 (a_1, \ldots, a_n) = (b_1, \ldots, b_n) \).

\[F_4 (a_1, \ldots, a_n) = (0, \ldots, 0, b_2, 0, \ldots, 0). \]

We define the operation "subtraction":

\[F_3 (a_1, \ldots, a_n) = F_1 (a_1, \ldots, a_n) \oplus F_2 (a_1, \ldots, a_n) = \left(\frac{b_1}{c}, \ldots, \frac{b_{i-1}}{c}, \frac{b_i}{c}, \ldots, \frac{b_n}{c} \right), \]

where

\[c^2 = b_1^2 + \ldots + b_{i-1}^2 + b_i^2 + \ldots + b_n^2. \]

Let us consider a machine consisting of \(n \) transformation devices each of which has the structure defined by the transformation \(F_4 \in U \). The machine can realize one of \(n \) transformations.

According to the above, such a machine may be replaced by a machine whose entire structure is given by a single transformation

\[F^* = c_1 F_1 \oplus \ldots \oplus c_m F_m, \]

where \(F_1, \ldots, F_m \) is the system of transformations in the set \(U \).

Then each set of images \(\Phi \), dividing into \(m \) patterns for the first machine, divides into the same patterns for the second machine also.

The structure (system of transformations) of each machine should be chosen according to the purpose of the machine and its image should be joined in a pattern.

The problem of finding a transformation providing effective pattern recognition apparently cannot be solved by direct calculation. Nevertheless there exists a means of finding the required transformation, corresponding to the goals set before the machine. This is the method of directed selection.

By directed selection we understand a progressive improvement of an arbitrary initial structure such that inefficient (with respect to a given criterion) portions of the structure are eliminated and replaced by other random structures. It is obvious that this will always lead to progress of the structure.

It should be emphasized that this method is not that of random selection over all possible structures, and there is no each succeeding modification of the machine does not inherit inefficient components.

Thus the criterion of efficiency of the structure we take the order of pattern distinguishability and organize in the machine the directed selection of transformations, then after a certain number of selection operations the quality of the transformations will be brought to the required level of perfection.

Finding the Generalized Portrait

According to inequality (1), the generalized portrait \(\Phi_1^* \) is the center of a sphere in a certain functional space within which all points belonging to a certain subset \(F_1 \) of the pattern \(\Phi_1^* \) fall, and within which no point of the subset \(F_2 \) of the system containing the pattern \(\Phi_1^* \) falls.

Let us consider the set \(\eta \) of points \(s_i \), for which the inequality

\[\sum \left| s_i - \Phi_1^* \right| < \rho \]

Let us remove from the initial set those transformations such that in the new structure the order of distinguishability be increased, and add new transformations taken at random from a certain set \(U \).
is valid.

If the set \(\eta \) is not empty, the following propositions hold.

1. There exists an unique point \(s^0_i \in \eta \) such that

\[
\kappa_i = \sum a_k f_{i_k} + \sum \beta f_{j_k}, \quad z > 0, \quad \beta < 0,
\]

where the coefficients \(a \) and \(\beta \) are nonvanishing only for those vectors \(f_i \) and \(f_j \) for which inequality (1) passes into equality.

2. The vector \(s^0_i \) has minimum length among all vectors \(s \in \eta \). This signifies that if for the generalized portrait we take the unit vector \(\varphi_i = s_i^0 / \| s_i^0 \| \), the threshold of recognition \(k_i = \min \left(f_i \varphi_i \right) \) will be maximum.

3. \(s_i^0 = \sqrt{\sum a_k + \sum \beta} \).

Correspondingly the threshold of recognition \(k_i \) for the generalized portrait \(\varphi_i = s_i^0 / \| s_i^0 \| \)

is equal to

\[
k_i = \frac{1}{\sqrt{\sum a_k + \sum \beta}}.
\]

4. The coefficients \(a_k, \beta_k \) can be found as the coordinates of a stable singular point of the system of equations

\[
\dot{x} = -e x_k + F_i (1 - (\varphi_i f_{i_k})), \quad \dot{\beta} = -e \beta + F_i (1 - (\varphi_i f_{i_k})).
\]

where

\[
F_i (z) = \begin{cases}
 z & \text{for } z > 0, \\
 0 & \text{for } z < 0,
\end{cases}
\]

The generalized portrait can be generated in the following way.

A description of the object, which in the first approximation is taken as the generalized portrait, is shown to the machine. If when a second object belonging to the same pattern is shown to the machine, it is not recognized by the machine, the description of this object is included in the generalized portrait generated as the second approximation. It is clear that the descriptions of recognized objects enter with zero weight into the generation of the generalized portraits.

During the learning process it is necessary to store in the machine memory not only the generalized portrait but those descriptions of objects which have taken part in the generation of this generalized portrait.

Using the concept of "generalized portrait" it is also possible to solve a number of other problems.

5. Certain Problems

The problem of autonomous learning may be formulated in the following manner.

Let there exist a certain set of objects. It is required to divide it into subsets such that in the image \(F \in U \) the descriptions of the objects satisfy inequality (1). If there are several such divisions, it is possible to require that division to be found for which the order of distinguishability is maximum.

With the discovery of the generalized portrait it is possible to solve the problem of the "shifting" image.

Let there exist a certain shifting image with description \(f(x, t) \), which for \(t \to \infty \) can be assigned to one of the

*The proofs of these propositions will be published separately.
patterns Φ_1, \ldots, Φ_n. It is necessary to determine as soon as possible to which of the patterns the shifting image belongs.

The solution of this problem reduces to the following extrapolation problem: there exist n functions $I_i(t)$ $f(x, t)\Psi_i(x)$ $(i = 1, 2, \ldots, n)$, defined on the interval $[0, T]$. Determine which of the functions first (for the smallest value of t) passes the recognition threshold (which can be solved by existing methods).

LITERATURE CITED

All abbreviations of periodicals in the above bibliography are letter-by-letter transliterations of the abbreviations as given in the original Russian journal. Some or all of this periodical literature may well be available in English translation. A complete list of the cover-to-cover English translations appears at the back of this issue.