Text Categorisation Using Document Profiling

Maximilien Sauban and Bernhard Pfahringer

Department of Computer Science
University of Waikato
Hamilton, New Zealand
{m.sauban, bernhard}@cs.waikato.ac.nz

Abstract. This paper presents an extension of prior work by Michael D. Lee on psychologically plausible text categorisation. Our approach utilises Lee’s model as a pre-processing filter to generate a dense representation for a given text document (a document profile) and passes that on to an arbitrary standard propositional learning algorithm. Similarly to standard feature selection for text classification, the dimensionality of instances is drastically reduced this way, which in turn greatly lowers the computational load for the subsequent learning algorithm. The filter itself is very fast as well, as it basically is just an interesting variant of *Naive Bayes*. We present different variations of the filter and conduct an evaluation against the Reuters-21578 collection that shows performances comparable to previously published results on that collection, but at a lower computational cost.

1 Introduction

In the last decade the amount of textual information in digital form has grown exponentially, mainly due to the forever-increasing accessibility of the Internet. It is crucial to create tools to organise the amount of information available. Text categorisation is one such tool. It aims at classifying textual documents into predefined categories. Text categorisation applications are manifold and are ranging from *automated meta-data extraction* for indexing to *document organisation* for databases or web pages (see Yang et al., [21]). Other interesting uses of text categorisation include *text filtering*, generally as part of a producer-consumer relationship, or *word sense disambiguation* when dealing with natural languages processing (see Roth, [15]).

1.1 Existing Text Categorisation Methods

It is difficult to be exhaustive when listing the existing text categorisation methods. Amongst the main approaches, decision tree methods (“divide-and-conquer” approach) have the advantage of being “human readable” in the sense that they deal with symbolic entities and not numeric values [3]. Investigations using probabilistic models usually focus on *Naive Bayes* and its variants [10]. Joachims [6] introduced the support vector machine method to text categorisation. Also worth
mentioning is the Rocchio method [14]; this method creates a prototype document for each class from the training set. A test document will be assigned to the class of the closest prototype found. Yang [19] invented a mapping approach using a multivariate regression model and investigated, together with Pedersen, lazy learning for text categorisation [20]. Frank et al. [4] investigated text categorisation using compression models, and Wiener et al. [17] were using neural networks. Yet other approaches have tried to improve predictive performance by incorporating semantic information like WordNet hypernyms [16].

1.2 David Lee’s method

Lee [9] came up with a psychologically plausible approach considering three different insights. Firstly, Lee noted that people are able not only to state that a given document is about a given topic but also that a document is not about a topic. Take for example "middle east conflict" as a topic; the occurrence of the word "rugby" in a document would give a strong hint about the document not being about the topic. Secondly, humans are able to make non-compensatory decisions: one can decide if a document is about a topic or not without necessarily having to read the whole document. Using our previous middle-east conflict example, if the document starts with something like "The south African rugby team just arrived in Auckland..." most people would not need to read any further to reach a conclusive, in this case negative, decision. Thirdly, people have the capacity to give answers with a level of confidence and so they are able to state if a document is either definitely about a topic or alternatively just remotely related to a topic.

Lee’s model’s formal definition is based on a Bayesian analysis, which states that it is possible to compute the posterior odds of a document being about a topic or not by multiplying the prior odds—chances of a document to be about a topic before looking at it—and the evidence—probability that a document would have been generated under the assumption that it is about a topic (or not). Lee considers the document as a sequence of words. The evidence then becomes the product of the probability of each word being in a document about the topic (or not). Note that this approach follows the Naive Bayes assumption that all words are independent of one another, also called the independence assumption. The evidences’ probabilities are quantified using the number of occurrences of the given word over the total number of words and are calculated for both categories, for and against the topic. The independence assumption allows analysing words sequentially, which permits monitoring the evolution of the posterior odds word by word in the same order as they appear in the document. Considering the logarithm of the posterior odds and using evidences for and against the topic leads to the following equation:

\[
\ln \frac{\Pr (c_j | d_i)}{\Pr (\neg c_j | d_i)} = \ln \frac{\Pr (c_j)}{\Pr (\neg c_j)} + \ln \frac{\Pr (w_1 | c_j)}{\Pr (w_1 | \neg c_j)} + \ln \frac{\Pr (w_2 | c_j)}{\Pr (w_2 | \neg c_j)} + \ldots + \ln \frac{\Pr (w_n | c_j)}{\Pr (w_n | \neg c_j)}
\]

Figure 1 shows the evolution of the posterior odds of two documents processed by the text classifier. The graph on the left depicts the partial log-odds sums
for a document about the topic, while the graph on the right depicts those
sums for a document that is not about the topic. This example also shows the
possibility of non-compensatory decision making by setting two thresholds, one
for the document being about the topic and the other for the document not being
about the topic. The decision is taken when one of the thresholds is reached. Let’s
assume the thresholds in Figure 1 are 100 for a document about the category
and −20 for a document not about the category. In the left hand side case,
the decision is taken after reading the 120th word (when the curve meets with
y = 100). On the right hand side example, the decision can be taken after reading
the 45th word (the curve meets with y = −20).

![Graphs showing document profiles](image_url)

Fig. 1. Illustration of document profiles, the left hand side one is about the topic while the right hand side one is not.

1.3 Our approach

The investigation presented here is an extension of Lee’s work [9]. An interesting
aspect of Lee’s method is that the document is processed sequentially and the
odds of the document with respect to a given category can be tracked as the
words are fed to the system. We call this sequence of the partial sums of the
log-odds of the words of a document a *document profile*. Usually those profiles
are not as clear-cut and easy to classify as the ones shown in Figure 1. We have
therefore decided to investigate a two-step process, where a first step generates
document profiles according to Lee’s method, and a second step extracts proposi-
tional information from these profiles that then can be fed into any arbitrary
propositional learner. Thus, Lee’s system is used as a dimensionality-reducing
pre-processing step.

The next section will explain this process in more detail, discuss issues with
the dictionary, and basically describe two different ways of extracting attributes
from document profiles. Sections 3 and 4 explain the experimental setup and
give and discuss experimental results. In Section 5 we present conclusions and
discuss further work.
2 Generating and manipulating document profiles

To construct a model, each word in the vocabulary is assigned two probabilities, the probability of the word being about the topic $Pr(w_k|c_j)$ and the probability of the word not being about the topic $Pr(w_k|\neg c_j)$ where w_k is the word, and c_j the topic. The probabilities are based on the rate at which the word has occurred in the training documents about and not about the category. Figure 2 (on the left hand side) portrays one such dictionary. The higher the magnitude of the influence, the more weight the word will have in the final decision. Note that

![Graphs](image)

Fig. 2. Dictionary for one category of the Reuters dataset and a shifted version of the dictionary on the right.

there are much more words with a negative influence. The explanation for that lies in the skewedness of the training data: the dictionary pictured in Figure 2 (on the left hand side) was trained with 197 documents about a given category and 9,406 documents not about that category. The 9,406 negative examples used for training were in fact the union of all 89 other categories. The skewedness also explains why the maximum positive amplitude is greater than the maximum negative one. Specialised words of the category in focus (word with a large positive influence score) are more likely to have a denser concentration in the positive documents than the specialised words of the other category (actually categories).

The three following sub-sections will describe dictionary manipulations that proved to be beneficial, and explain the two ways propositional attributes are extracted from document profiles.

2.1 Shifting the origin on the y-axis

Figure 2 (right hand side) illustrates the result of shifting the origin on the y-axis in an attempt to equalize the maximum amplitudes. Note that a lot more words now have a negative influence, and that the magnitude of the positive influences has been reduced. This shift usually improves performance, but we have yet to find a conclusive explanation for this phenomenon.
Table 1. Dictionary sizes after cutting off at x% of the top influence value.

<table>
<thead>
<tr>
<th>percent of the maximum positive/negative value cut off</th>
<th># of words remaining in the dictionary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% (whole dictionary)</td>
<td>31651</td>
</tr>
<tr>
<td>10%</td>
<td>4046</td>
</tr>
<tr>
<td>15%</td>
<td>2860</td>
</tr>
<tr>
<td>30%</td>
<td>1288</td>
</tr>
<tr>
<td>60%</td>
<td>166</td>
</tr>
</tbody>
</table>

2.2 Reducing the size of the dictionary

As mentioned earlier, the specialised words carry a large influence score, but their distribution is highly skewed; there are almost no specialised words for the negative class. On the other hand, words with a low influence score, are more evenly distributed between both the positive and negative class. Their low influence score causes them to play only a minor part in the final decision, but they can potentially add noise. We have therefore introduced a mechanism to prune words from the dictionary based on their influence score. The decision threshold is based on the maximum positive value and the maximum negative value (of the unshifted dictionary). The cut off value is determined as a percentage of the maximum values. A cut at 30% means that all the words with influence score between 0 and 30% of the maximum positive influence and between 0 and 30% of the maximum negative influence score will not be taken into account. Table 1 shows the non linear relation between the cut off value and the number of words left in the dictionary when applying this idea to the dictionary of Figure 2. This pruning effect is also illustrated in Figure 3 where the pruned dictionaries for the four different cut off values of 10%, 15%, 30% and 60% appear in clockwise order starting from the upper left corner. An additional advantage of pruning dictionaries is the potential of large speedups for the generation of document profiles.

2.3 Turning document profiles into attributes

We have used two different methods to turn document profiles into a constant number of propositional attributes. We need to deal with the fact that the number of words in each document is different, therefore also the length of document profiles differs. The first methods solves that problem by simply reading off the value of the document profile after a certain percentage of the document has been read. Looking at Figure 4, we see that ten values are extracted, with equal-sized gaps in between. In a naive approach the maximum number of attributes that can be extracted in this manner is limited by the size of the smallest document.

The second method for extracting attributes is even simpler, computing just some very high-level summary information about a document profile. Specifically, such a description comprises a mere seven attributes: the maximum and
Fig. 3. Different cut off values applied to the dictionary of Figure 2; clockwise from the upper left corner the values are: 10%, 15%, 30% and 60%.

Fig. 4. Reading off attributes from a document profile.
the minimum value encountered, the respective positions of these two extrema relative to the document length, a boolean indicator whether the maximum is reached before the minimum, and the total number of words for and against the category (i.e., how many words carried a positive influence, how many carried a negative influence). Obviously this is just one of a few possible high-level summary descriptions; other potentially interesting attributes include document length or final value in the profile.

3 Experimental setup

To investigate the performance of the two-step process described above we have conducted an empirical evaluation using the Reuters corpus\(^1\). We used the same train-test split as proposed in [2] were a total of 12,902 documents is split into a train-set of 9,603 documents and a test-set of 3,299 documents. We restricted our evaluation to the 10 most common categories, as presented in Table 2.

<table>
<thead>
<tr>
<th>category</th>
<th># of training articles</th>
<th># of test articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>earnings (earn)</td>
<td>2877</td>
<td>1087</td>
</tr>
<tr>
<td>corporate acquisitions (acq)</td>
<td>1650</td>
<td>719</td>
</tr>
<tr>
<td>money market (money-fc)</td>
<td>538</td>
<td>179</td>
</tr>
<tr>
<td>grain (grain)</td>
<td>433</td>
<td>149</td>
</tr>
<tr>
<td>crude oil (crude)</td>
<td>389</td>
<td>189</td>
</tr>
<tr>
<td>trade issues (trade)</td>
<td>369</td>
<td>117</td>
</tr>
<tr>
<td>interest (interest)</td>
<td>347</td>
<td>131</td>
</tr>
<tr>
<td>wheat (wheat)</td>
<td>212</td>
<td>71</td>
</tr>
<tr>
<td>shipping (ship)</td>
<td>197</td>
<td>89</td>
</tr>
<tr>
<td>corn (corn)</td>
<td>181</td>
<td>56</td>
</tr>
</tbody>
</table>

For our evaluation we used the standard information-retrieval performance measures of precision and recall, as well as aggregate measures based on those two. Precision is the ratio of valid positive predictions over the total of positive predictions; it shows how relevant our findings are. Recall computes how many documents about the category were retrieved over the total number of documents about the category; it shows how exhaustive the retrieval is. The aggregate measures were F-measure and the precision-recall mean. The standard F-measure computes the geometric mean of precision and recall and the precision-recall mean is the arithmetic mean (average) of those two measures. The four formulae are summarised in Table 3. Macroaveraging simply computes averages of either the F-measures or precision-recall means over several categories.

\(^1\) The Reuters-21578 collection may be freely downloaded for experimentation purposes from www.research.att.com/~lewis/reuters21578.html
Table 3. Four information-retrieval evaluation measures: precision, recall, F-measure and precision-recall mean.

<table>
<thead>
<tr>
<th>measure name</th>
<th>formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>precision</td>
<td>(\frac{tp}{p})</td>
</tr>
<tr>
<td>recall</td>
<td>(\frac{tp}{n})</td>
</tr>
<tr>
<td>F-measure</td>
<td>(\frac{2 tp}{2 tp + fp + fn})</td>
</tr>
<tr>
<td>precision-recall mean</td>
<td>(\frac{tp}{2(tp + fp + fn)})</td>
</tr>
</tbody>
</table>

4 Experimental results

We have conducted an extensive series of experiments to judge the performance of various standard classifiers using document profiles, and also to investigate the effects of the dictionary tuning we have described above. For lack of space we will only concentrate some of the findings here, a complete report can be found in the forth-coming Master’s thesis of the first author. We used the following classifiers from the Weka [18] package: J48 (C4.5, a decision tree algorithm [13]), OneR (rule based algorithm [5]), IBk (k-Nearest Neighbour (k-NN) [1]), SMO (Support Vector Machine [12] and [8]) and Naive Bayes (Naive Bayes algorithm [7]). We have also added a very simple classifier called Polarity that simply predicts the sign of the last value in the document profile. Polarity is closely related to multinomial Naive Bayes ([11]).

4.1 How many attributes to extract?

Figure 5 shows the performances of the six different classifiers on the category trade per number of attributes taken from the profile. While J48, OneR, IBk and SMO show equivalent consistent results, Naive Bayes shows an interesting behaviour with recall rising at the expense of precision as the number of attributes increases. Obviously, Polarity is not affected by the number of attributes as it only considers the last attribute anyway. It shows impressive recall, but unfortunately also poor precision. Qualitatively speaking, graphs for other categories look similar.

Thus, we only show Figure 6 here, which depicts macroaveraged F-measures of the 6 classifiers on the categories acq, earn, corn, trade and ship per number of samples. Overall, J48 is clearly dominant, but most interestingly, SMO is getting very close for larger numbers of attributes. Unfortunately, SMO’s performance seems to peak at 150 attributes and drop thereafter (which is not shown in this figure). Summing up, choosing between 100 and 150 attributes seems to lead to the best results for most of the classifiers.

4.2 Pruning the dictionary plus reading only parts of a document

In this section we only employ J48, because it performed well in the experiments reported in the last section, and it is fast. Figure 7 illustrates the effect of using
Fig. 5. Performances of six different classifiers on the Reuters category *Trade*.

Fig. 6. Macroaverages for 6 classifiers plotted per number of attributes.
a pruned dictionaries and of only reading initial portions of documents. While the precision is generally not affected by reducing the number of words in the dictionary, recall significantly decreases as the pruning percentage increases. Also note that performance is much less affected by the percentage of the document read than by the size of the pruned dictionary.

4.3 Performance of the summary attributes

In this subsection we compare the performance achievable with the seven-attribute summary information to various standard text classifiers. Figure 8 shows the macroaverage of the precision-recall means of 3 variations of this classifier against results obtained by [3] for Naive Bayes and [4] for PPM and against SMO and J48 on the ten largest Reuters-21578 categories. The three variations all used J48 on a shifted dictionary, using either 35% or 40% as a cutoff value, and read either 90% or the whole document. Both SMO and J48 were run on top of a standard bag-of-words-based feature selection using info-gain. 50 features for J48 and 150 features for SMO yielded the best results.

The results show that J48 using this tiny set of features outperforms Naive Bayes and PPM, closely approaches standard J48, but does not perform as well as SMO. However, it is very fast, both at training as well as at prediction time.
Fig. 8. Comparing 7 classifiers' precision-recall mean macroaverage over the 10 largest Reuters categories.

5 Conclusion

This paper has presented a text classification approach based on document profiles. Its predictive performance is comparable to more standard approaches, but the method is extremely simple and therefore fast. Our two-step approach effectively transforms a sparse learning problem into a dense one without having to explicitly select single features from the original representation space.

The most promising direction for future work will be investigating combinations of the different sets of attributes available. Two approaches are possible: one can combine the high-level summary, the partial sums, as well as standard feature subsets into one larger single set of features. Secondly, one can train single classifiers only one of these different feature sets and then form ensembles of classifiers trained over different sets of features. Another direction will be the study of the effects of adding semantic information like WordNet hypernyms to documents before computing profiles.

Acknowledgments The authors would like to thank the other members of the WEKA group for their assistance, especially Eibe Frank and Nils Weidmann.

References