Goal-Based Agents
Problem Solving through Problem Reduction

Vasant Honavar
Artificial Intelligence Research Laboratory
Department of Computer Science
Bioinformatics and Computational Biology Program
Center for Computational Intelligence, Learning, & Discovery
Iowa State University
honavar@cs.iastate.edu
www.cs.iastate.edu/~honavar/
www.cild.iastate.edu/
www.bcb.iastate.edu/
www.cild.iastate.edu/

Problem Reduction Representation

• Divide and conquer
• Reduce solution recursively to problems to solutions to sub-problems
• Problem is solved when all sub-problems are solved

Example

• Problem
 – solving an integral
• Sub-problems
 – easier integrals to solve
• Operators
 – rules of integral calculus and algebra
• Primitive problems
 – problems whose solutions can be looked up or computed by executing a known procedure
Example
- Problem: solving an integral
- Sub-problems: easier integrals to solve
- Operators: rules of integral calculus and algebra
- Primitive problems: problems whose solutions can be looked up or computed by executing a known procedure

Problem reduction representation (PRR)
- A PRR problem is specified by a 3-tuple (G, O, P)
 - G is a problem to be solved
 - O is a set of operators for decomposing problems into sub-problems through AND or OR decompositions
 - P is a set of primitive problems
- Solution:
 - An AND decomposition is solved when each of the sub-problems is solved
 - An OR decomposition is solved when at least one of the sub-problems is solved
 - A problem is unsolvable if it is neither a primitive problem nor can it be further decomposed
- PRR is a generalization of the state space representation (why?)

Problem reduction representation
- Solving a problem in PRR reduces to searching an AND-OR graph
- Nodes correspond to problems
- Connectors correspond to arcs
- Connectors corresponding to AND or OR decompositions
- Connectors of arity k are called k-connectors
Solution to an SRR problem

- A sub-graph s_q of an AND-OR graph is said to be a solution to a problem q if
 - s_q is rooted at q
 - Each non-leaf node y in s_q has exactly one connector out of it that belongs to s_q
 - Each leaf node in s_q is a primitive problem (i.e. a member of P)
- A problem q is said to be solvable if
 - a sub-graph s_q of an AND-OR graph is a solution to q
- Solving a problem G using a PRR (G, O, P) entails finding a sub-graph S_G of the corresponding AND-OR graph that is a solution of G.

Question – How can we solve an SRR problem?

- Basic idea:
 - Generalize state-space search
- How?
 - partial paths \rightarrow subgraphs of the SRR AND-OR graph
 - Expanding a node must comply with the semantics of AND and OR connectors
 - Termination test must comply with the definition of a solution
Example – BFS

List

Exercise: Solve the same problem using DFS

Optimal (minimum cost) solution of AND-OR graphs

Cost of an unsolvable primitive problem – infinity
Cost of connectors and primitive problems are assumed to be strictly positive and bounded

Optimal solution of an SRR problem

Example:
Branch and Bound Search for Optimal Solution

Example:

\[\text{List} \]
\[\begin{align*}
(A) \\
(B & C) (D) \\
(E & C) (D) (F & C) \\
(D) (E & G & H) (F & C) \\
(E & G & H) (I & J) (F & C)
\end{align*} \]

\[\text{Cost}(A) = \text{Cost}(E \& G \& H) = 5 + 1 + 3 + 0 + 0 = 9 \]

Using Heuristics

\[f(C \& D) = \text{Cost}(A) + 5 + h(C) + h(D) \]
\[f(E) = \text{Cost}(A) + 2 + h(E) \]

Admissible heuristic function

\[h(n) \leq h^*(n) = \text{Cost}(n) \] - Cost of the cheapest solution of \(n \)

AO* - Searching AND-OR graphs

Example:

\[\begin{align*}
h(C) = h(D) = h(I) = h(J) = 1 \\
(A) \\
(I \& J) (C \& D) \\
(K \& M \& N) (C \& D) (L \& M \& N)
\end{align*} \]
Properties of AO*

• AO* is a generalization of A* for AND-OR graphs
• AO*, like A*, is admissible if the heuristic function is admissible and the usual assumptions (finite branching factor etc) hold
• AO*, like A* is also optimal among the class of heuristic search algorithms that use an additive cost / evaluation function

Proofs left as exercises