Deliberative Agents
Knowledge Representation I

Vasant Honavar
Artificial Intelligence Research Laboratory
Department of Computer Science
Bioinformatics and Computational Biology Program
Center for Computational Intelligence, Learning, & Discovery
Iowa State University
honavar@cs.iastate.edu
www.cs.iastate.edu/~honavar/
www.cild.iastate.edu/
www.bcb.iastate.edu/
www.igert.iastate.edu

Deliberative Agents

- Intelligent behavior requires knowledge about the world
Deliberative Agents

- Intelligent behavior requires knowledge about the world
- **Procedural**, e.g., functions
 - Using knowledge = executing the procedure
- **Declarative**, e.g., facts
 - Using knowledge = performing inference

- Deliberative agents
 - Can represent and reason with knowledge
 - Exhibit logical rationality

Knowledge representation (KR) is a surrogate

A **declarative** knowledge representation
- Maps facts that are true in the world into sentences
- **Reasoning** is performed by manipulating sentences according to sound rules of inference
- The results of inference are sentences that correspond to facts that are true in the world
- This correspondence provides **semantic grounding** for the representation
- Allows agents to substitute thinking for acting in the world
 - Known facts: The coffee is hot; coffee is a liquid; a hot liquid will burn your tongue;
 - Inferred fact: Coffee will burn your tongue
KR is a set of ontological commitments

- What does an agent care about?
 - Entities –
 - coffee, liquid, tongue
 - Properties –
 - being hot, being able to burn
 - Relationships
 - Coffee is a liquid
- KR involves abstraction, simplification
 - A representation is like a cartoon
KR involves a set of epistemological commitments

- **What can we know?**
 - Propositional logic
 - Is a proposition *true* or *false*?
 - Probability theory
 - What is the *probability* that a given proposition true?
 - Decision theory
 - Which choice among a set of candidate choices is the most *rational*?
 - Logic of Knowledge
 - What does John know that Jim does not?

KR is a theory of intelligent reasoning

- **How can knowledge be encoded?**
 - Syntax
- **What does the encoded knowledge mean?**
 - Semantics (entailment)
 - Inferences that are sanctioned by the semantics
- **What can we infer from what we know?**
 - Inferences that can be performed (by rules of inference)
 - Soundness, completeness, efficiency
- **How can we manage inference?**
 - What should we infer from among the things we can infer?
KR formalisms

KR formalisms provide provision for describing
- Individuals
- Sets of individuals (classes)
- Properties of individuals
- Properties of classes
- Relationships between individuals
- Relationships between classes
- Actions and their effects
- Locations and events in space and time
- Uncertainty

KR formalisms

- Logical
 - e.g., First order logic, description logic)
- Probabilistic
 - e.g., Bayesian networks
- Grammatical
 - e.g., Context free grammars
- Structured
 - e.g., frames – as in object-oriented programming
- Decision theoretic
- …
KR is a medium for efficient computation

- Reasoning = computation
- KR involves tradeoffs between
 - Expressivity and tractability (decidability, efficiency)
 - General purpose reasoning versus special-purpose, domain-specific inference
 - Declarative versus procedural knowledge

KR is a medium of expression and communication

- If we assume shared
 - ontological commitments
 - KR formalism (syntax, semantics, reasoning)
- Then KR is a medium for
 - Expression
 - How general is it?
 - How precise is it?
 - Is it expressive enough?
 - Communication
 - Can we talk or think in the language?
 - What can we communicate with ease?
 - What things are difficult to communicate?
Logical Agents I – Propositional Logic

- Knowledge-based agents
- Logic in general - models and entailment
- Propositional (Boolean) logic
 - Syntax
 - Semantics
 - Equivalence, Validity, Satisfiability, Decidability
- Inference rules
 - Soundness, completeness
 - Resolution
- Inference procedures for automated theorem proving
 - Soundness, completeness, efficiency

Knowledge-Based Agents

- Knowledge-based agents represent and use knowledge about the world
Knowledge Base

- Knowledge base = set of sentences about the world in a declarative formal language
- Basic operations on the knowledge base
 - Tell
 - Ask
- Additional operations
 - Untell (in non monotonic logic)

A simple knowledge-based agent

```python
function KB-AGENT(percept) returns an action
static: KB, a knowledge base
  t, a counter, initially 0, indicating time

Tell(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action ← Ask(KB, MAKE-ACTION-QUERY(t))
Tell(KB, MAKE-ACTION-SENTENCE(action, t))
t ← t + 1
return action
```

Knowledge based agents
- Are not arbitrary programs
- Are amenable to knowledge level description
 - what the agent knows
Logic as a Knowledge Representation Formalism

Logic is a declarative language to:

• Assert sentences representing facts that hold in a world W (these sentences are given the value true)
• Deduce the true/false values to sentences representing other aspects of W

Examples of Logics

• Propositional logic
 $A \land B \Rightarrow C$

• First-order predicate logic
 $(\forall x) (\exists y) \text{Mother}(y,x)$

• Logic of Knowledge
 $K(\text{John}, \text{Father}(\text{Zeus}, \text{Cronus}))$

• Logic of Belief
 $B(\text{John}, \text{Father}(\text{Zeus}, \text{Cronus}))$

Note: You can believe things that are false, but you cannot know things that are false.
Components of Logical KR

- A logical formalism
 - Syntax for well-formed-formulae (wff)
 - Vocabulary of logical symbols (and, or, not, implies etc.)
 - Interpretation semantics for logical symbols
 - e.g. A or B holds in the world whenever A holds in the world or B holds in the world
- An ontology
 - Vocabulary of non logical symbols
 - objects, properties (e.g., A above), etc.
 - definitions of non-primitive symbols (e.g., iff)
 - axioms restricting the interpretation of primitive symbols (more on this later)
- Proof theory – sound rules of inference

Propositional Logic

- Statements are atomic propositions, with no structure
 - Propositions can be true or false
- Statements can be combined using logical connectives.
 Examples:
 - C = “It’s cold outside”
 - C is a proposition
 - O = “It’s October”
 - O is a proposition
 - If O then C
 - if it’s October then it’s cold outside
Propositional Logic: Syntax, logical symbols

- The proposition symbols P_1, P_2 etc are sentences
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

We use extra-linguistic symbols (e.g., parentheses) to group sentences to avoid ambiguity.

Propositional Logic - Semantics

A Proposition
- does not have intrinsic meaning
- gets its meaning from correspondence with statements about the world (interpretation)
- Has a denotation in a given interpretation
 - e.g., proposition B denotes the fact that battery is charged
- Is True or False in a chosen interpretation
Propositional Logic – Model Theoretic Semantics

• Consider a logic with only two propositions:
 – Rich, Poor
 – denoting Tom is rich and Tom is poor respectively

• A model M is a subset of the set A of atomic sentences in the language

• By a model M we mean the state of affairs in which
 – every atomic sentence that is in M is true and
 – every atomic sentence that is not in M is false

Example

$A = \{ \text{Rich}, \text{Poor} \}$

$M_0 = \{ \}; \ M_1 = \{ \text{Rich} \}; \ M_2 = \{ \text{Poor} \}; \ M_3 = \{ \text{Rich}, \text{Poor} \}$

Propositional Logic: Semantics of Logical Symbols

<table>
<thead>
<tr>
<th>P</th>
<th>$\neg P$</th>
<th>$P \land \neg Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>
Model Theoretic Semantics

\[A = \{ \text{Rich, Poor} \} \]
\[M_0 = \{ \}; \ M_1 = \{ \text{Rich} \}; \ M_2 = \{ \text{Poor} \}; \ M_3 = \{ \text{Rich, Poor} \} \]

- Rich is True in \(M_1, M_3 \)
- Rich \(\lor \) Poor is True in \(M_1, M_2, M_3 \)
- Rich \(\land \) Poor is True in \(M_3 \) \(\text{Hmm !!} \)
- Rich \(\Rightarrow \) \(\neg \) Poor is True in \(M_0, M_1, M_2 \)

Proof Theory: Entailment

- We say that \(p \) entails \(q \) (written as \(p \models q \)) if \(q \) holds in every model in which \(p \) holds

\(\mu_q \) = set of models in which \(q \) holds
\(\mu_p \) = set of models in which \(p \) holds
\(p \models q \) if it is the case that \(\mu_p \subseteq \mu_q \)
Entailment – Example

\[p \land (p \Rightarrow q) \models q \]

Proof

\[
\begin{align*}
(p \in M) \land ((p \Rightarrow q) \in M) \\
(p \in M) \land ((\neg p \lor q) \in M) \\
((p \land \neg p) \lor (p \land q)) \in M \\
p \land q \in M
\end{align*}
\]

\[
\therefore \mu_{p \land (p \Rightarrow q)} = \mu_{p \land q} \subseteq \mu_q
\]

Logical Rationality

- An propositional logic based agent \(A \) with a knowledge base \(KB_A \) is justified in inferring \(q \) if it is the case that

 \[KB_A \models q \]

- How can the agent \(A \) decide whether in fact \(KB_A \models q \) ?
 - Model checking
 - Enumerate all the models in which \(KB_A \) holds
 - Enumerate all the models in which \(q \) holds
 - Check whether \(KB_A \subseteq \mu_q \)
 - Inference algorithm based on inference rules
Inference Rule

• An inference rule \(\{ \xi, \psi \} \vdash \varphi \) consists of
 – 2 sentence patterns \(\xi \) and \(\psi \) called the conditions and
 – one sentence pattern \(\varphi \) called the conclusion
• If \(\xi \) and \(\psi \) match two sentences of KB then
 – the corresponding \(\varphi \) can be inferred according to the rule
• Given a set of inference rules \(I \) and a knowledge base \(KB \)

 inference is the process of successively applying inference rules from \(I \) to \(KB \), each rule application adding its conclusion to \(KB \)

Inference rules

• Modus ponens

 \[
 p \Rightarrow q \\
 \hline
 p \\
 \hline
 q \\

 \]

 Modus ponens derives only inferences sanctioned by entailment

 Modus ponens is sound

• Loony tunes

 \[
 \underline{friday} \\
 \hline
 p \Rightarrow q \\
 \hline
 q \\
 \hline
 q \\
 \hline
 p \\

 \]

 Loony tunes can derive inferences that are not sanctioned by entailment

 Loony tunes is not sound
Example: Inference using Modus Ponens

\[
\{ p \implies q , p \} \vdash \neg q
\]

\[
\{ \xi , \psi \} \vdash \phi
\]

KB:

- \(Battery-OK \land Bulbs-OK \implies Headlights-Work \)
- \(Battery-OK \land Starter-OK \land \neg Empty-Gas-Tank \implies Engine-Starts \)
- \(Engine-Starts \land \neg Flat-Tire \land Headlights-Work \implies Car-OK \)
- \(Battery-OK \land Bulbs-OK \)
- \(Starter-OK \land \neg Empty-Gas-Tank \land \neg Flat-Tire \)

Ask

- \(Car-OK? \)

Soundness and Completeness of an inference rule \(\vdash \)-

- We write \(p \vdash q \) to denote that that \(p \) can be inferred from \(q \) using the inference rule \(\vdash \)

An inference rule \(\vdash \) is said to be

- **Sound** if whenever \(p \vdash q \), it is also the case that \(p \models q \)
- **Complete** if whenever \(p \models q \), it is also the case that \(p \vdash q \)
Soundness and Completeness of an inference rule \vdash -

- We can show that *modus ponens* is sound, but *not* complete unless the KB is *Horn* i.e., the KB can be written as a collection of sentences of the form

$$a_1 \land a_2 \land \ldots \land a_n \Rightarrow b$$

where each a_i and b are atomic sentences

Unsound inference rules are not necessarily useless!

Abduction (Charles Peirce) is *not sound*, but useful in diagnostic reasoning or hypothesis generation

\[p \Rightarrow q \]

\[\begin{array}{c}
q \\
\hline
p
\end{array} \]

\[BlockedArtery \Rightarrow HeartAttack \]

\[HeartAttack \]

\[BlockedArtery \]
Searching for proofs

- Finding proofs can be cast as a search problem
- Search can be
 - forward (forward chaining) to derive goal from KB
 - or backward (backward chaining) from the goal
- Searching for proofs
 - is not more efficient than enumerating models in the worst case
 - Can be more efficient in practice with the use of suitable heuristics
- Standard propositional logic is monotonic
 - the set of entailed sentences can only increase as inferred facts are added to KB

\[\text{for any sentence } \alpha \text{ and } \beta : \text{if } KB \models \alpha \text{ then } KB \land \beta \models \alpha \]

Soundness and Completeness of an inference algorithm

- An inference algorithm starts with the KB and applies applicable inference rules until the desired conclusion is reached
- An inference algorithm is sound if it uses a sound inference rule
- An inference algorithm is complete if uses a complete inference rule together with a complete search procedure
- We will derive a sound and complete inference rule for propositional logic later
Inference by model checking is sound and complete for propositional Knowledge Bases

- Depth-first enumeration of all models is sound and complete

  ```
  function TT-ENTAILS(KB α) returns true or false
  symbols ← a list of the proposition symbols in KB and α
  return TT-CHECK-ALL(KB, α, symbols, [])
  ```

  ```
  function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
  if EMPTY(symbols) then
    if PL-TMPL?(KB, model) then return PL-TMPL?(α, model)
    else return true
  else do
    P ← FIRST(symbols), rest ← REST(symbols)
    return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model) and
    TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model)
  ```

- For n symbols, worst case time complexity is $O(2^n)$, space complexity is $O(n)$.
- In practice, much more efficient inference possible

Logical equivalence

- Two sentences are *logically equivalent* iff true in same set of models or $α ≡ β$ iff $α \models β$ and $β \models α$.

 $$(\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land$$

 $$(\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor$$

 $$(\alpha \land (\beta \land \gamma)) \equiv ((\alpha \land \beta) \land \gamma) \quad \text{associativity of } \land$$

 $$(\alpha \lor (\beta \lor \gamma)) \equiv ((\alpha \lor \beta) \lor \gamma) \quad \text{associativity of } \lor$$

 $$\neg(\neg\alpha) \equiv \alpha \quad \text{double-negation elimination}$$

 $$(\alpha \Rightarrow \beta) \equiv (\neg\beta \Rightarrow \neg\alpha) \quad \text{contraposition}$$

 $$(\alpha \Rightarrow \beta) \equiv (\neg\alpha \lor \beta) \quad \text{implication elimination}$$

 $$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination}$$

 $$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta \quad \text{de Morgan}$$

 $$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta \quad \text{de Morgan}$$

 $$(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor$$

 $$(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land$$
Validity and satisfiability

• A sentence is **valid** if it is true in **all** models,
 – e.g., True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
• Validity is connected to inference via the **Deduction Theorem**:
 – $KB \models \alpha$ if and only if ($KB \Rightarrow \alpha$) is valid
• A sentence is **satisfiable** if it is true in **some** model
 – e.g., $A \lor B$, C
• A sentence is **unsatisfiable** if it is true in **no** models
 – e.g., $A \land \neg A$
• Satisfiability is connected to inference via the following:
 – $KB \models \alpha$ if and only if ($KB \land \neg \alpha$) is unsatisfiable
 – Useful for proof by contradiction

Sound Inference rules in PL

• Modus Ponens
 \[
 \frac{\alpha \Rightarrow \beta, \alpha}{\beta}
 \]
• And-elimination: from a conjunction any conjunct can be inferred:
 \[
 \frac{\alpha \land \beta}{\alpha}
 \]
• All logical equivalences of slide 32 can be used as inference rules
 \[
 \frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}
 \]
Proof

- The proof of a sentence α from a set of sentences KB is the derivation of α obtained through a series of applications of sound inference rules to KB
- $KB \models \alpha$ if and only if $\{KB, \neg \alpha\}$ is unsatisfiable
- Proving α from KB is equivalent to deriving a contradiction from KB augmented with the negation of α
- Proof typically requires transformation of sentences into a normal form

Towards a sound and complete inference rule for propositional KB

\[
\begin{array}{c}
p \Rightarrow q \\
\hline
p \hline
q
\end{array}
\]

Modus ponens is sound

p does not have to be an atomic sentence

\[
\begin{array}{c}
a_1 \land a_2 \land a_3 \cdots a_{t-1} \land a_t \land a_{t+1} \cdots a_n \Rightarrow b \\
T \Rightarrow a_t \\
\hline
a_1 \land a_2 \land a_3 \cdots a_{t-1} \land a_{t+1} \cdots a_n \Rightarrow b
\end{array}
\]

\[
\begin{array}{c}
a_1 \land a_2 \land a_3 \cdots a_{t-1} \land a_t \land a_{t+1} \cdots a_n \Rightarrow b \\
\hline
d_1 \land d_2 \cdots d_m \Rightarrow c \\
\hline
a_1 \land a_2 \land a_3 \cdots a_{t-1} \land a_{t+1} \cdots a_n \land d_1 \land d_2 \cdots d_m \Rightarrow b
\end{array}
\]

given $c = a_1$.
Resolution principle

\(b \) does not have to be an atomic sentence

\[
\begin{align*}
 a_1 \land a_2 \land \cdots a_{t-1} \land a_t \land a_{t+1} \land \cdots a_n & \Rightarrow b_1 \lor b_2 \lor \cdots b_k \\
 d_1 \land d_2 \land \cdots d_m & \Rightarrow c \quad \text{(assume} \ a_t = c) \\
 (a_1 \land a_2 \land \cdots a_{t-1} \land a_{t+1} \land \cdots a_n) \land (d_1 \land d_2 \land \cdots d_m) & \Rightarrow b_1 \lor b_2 \lor \cdots b_k
\end{align*}
\]

\(c \) does not have to be an atomic sentence

\[
\begin{align*}
 a_1 \land a_2 \land \cdots a_{t-1} \land a_t \land a_{t+1} \land \cdots a_n & \Rightarrow b_1 \lor b_2 \lor \cdots b_k \\
 d_1 \land d_2 \land d_m & \Rightarrow c_1 \lor c_2 \lor \cdots c_{j-1} \lor c_j \lor c_{j+1} \lor \cdots c_l \\
 (a_1 \land a_2 \land \cdots a_{t-1} \land a_{t+1} \land \cdots a_n) \land (d_1 \land \cdots d_m) & \Rightarrow \\
 (b_1 \lor b_2 \lor \cdots b_k) \lor (c_1 \lor c_2 \lor \cdots c_{j-1} \lor c_j \lor c_{j+1} \lor \cdots c_l) \quad \text{(assume} \ c_j = a_t)
\end{align*}
\]

Resolution is sound and complete for propositional \(KB \)

• Resolution is sound and complete for propositional \(KB \)
• *Proof omitted – refer to Russell and Norvig*
Applying resolution

- Transform \(KB \) into an equivalent Conjunctive normal form (CNF)
 - Each sentence in \(KB \) is a disjunction of literals or their negations using known logical equivalences
 - \(KB \) is a conjunction of disjunctions

Transformation to Clause Form (CNF)

Example:

\[
(A \lor \neg B) \Rightarrow (C \land D)
\]

1. Eliminate \(\Rightarrow \)
 \[
 \neg(A \lor \neg B) \lor (C \land D)
 \]
2. Reduce scope of \(\neg \)
 \[
 (\neg A \land B) \lor (C \land D)
 \]
3. Distribute \(\lor \) over \(\land \)
 \[
 (\neg A \lor (C \land D)) \land (B \lor (C \land D))
 \]
 \[
 (\neg A \lor C) \land (\neg A \lor D) \land (B \lor C) \land (B \lor D)
 \]

Set of clauses:

\{\neg A \lor C, \neg A \lor D, B \lor C, B \lor D\}
Applying resolution

Example

\[\neg \text{Engine-Starts} \land \neg \text{Flat-Tire} \land \text{Headlights-Work} \Rightarrow \text{Car-OK} \]

is transformed to

\[\neg \text{Engine-Starts} \lor \text{Flat-Tire} \lor \neg \text{Headlights-Work} \lor \text{Car-OK} \]

\[\text{Battery-OK} \land \text{Bulbs-OK} \]

is transformed to

\[\{ \text{Battery-OK} , \text{Bulbs-OK} \} \]

Example

Given:

\[\neg \text{Engine-Starts} \lor \text{Flat-Tire} \lor \neg \text{Headlights-Work} \lor \text{Car-OK} \]
\[\neg \text{Battery-OK} \lor \neg \text{Bulbs-OK} \lor \text{Headlights-Work} \]

Inferred:

\[\neg \text{Engine-Starts} \lor \text{Flat-Tire} \lor \neg \text{Car-OK} \lor \neg \text{Battery-OK} \lor \neg \text{Bulbs-OK} \]
Resolution by Refutation Algorithm

Add negation of goal to KB, derive empty clause (contradiction)

RESOLUTION-REFUTATION (KB, α)

clauses ← set of clauses obtained from KB and ¬α
new ← {}

Repeat:
For each C, C’ in clauses do
res ← RESOLVE(C,C’)
If res contains the empty clause then return yes
new ← new U res
If new ⊆ clauses then return no
clauses ← clauses U new

Exercise: Prove Car-OK using resolution by refutation

KB:

Battery-OK ∧ Bulbs-OK ⇒ Headlights-Work
Battery-OK ∧ Starter-OK ∧ ¬Empty-Gas-Tank ⇒ Engine-Starts
Engine-Starts ∧ ¬Flat-Tire ∧ Headlights-Work ⇒ Car-OK
Battery-OK ∧ Bulbs-OK
Starter-OK ∧ ¬Empty-Gas-Tank ∧ ¬Flat-Tire

Ask

Car-OK?
Inference with Horn KB

- Each Horn clause has only one positive literal
- Inference can be done with forward or backward chaining
- Entailment decidable in time linear in the size of propositional KB
- Prolog

Forward chaining

- Idea: fire any rule whose premises are satisfied in the \(KB \),
 - add its conclusion to the \(KB \), until query is found
Forward chaining algorithm

- Forward chaining is sound and complete for Horn KB

```plaintext
function PL-FC-ENTAIL?(KB, q) returns true or false
    local variables: count, a table, indexed by clause, initially the number of premises
                     inferred, a table, indexed by symbol, each entry initially false
                     agenda, a list of symbols, initially the symbols known to be true
    while agenda is not empty do
        p ← Pop(agenda)
        unless inferred[p] do
            inferred[p] ← true
            for each Horn clause c in whose premise p appears do
                decrement count[c]
                if count[c] = 0 then do
                    if HEAD[c] = q then return true
                    PUSH(HEAD[c], agenda)
        return false
```

Forward chaining example

Forward chaining example
Forward chaining example
Forward chaining example
Forward chaining example

Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are derived.
2. Consider the final state as a model m, assigning true/false to symbols.
3. Every clause in the original KB is true in m

 $a_1 \land \ldots \land a_k \Rightarrow b$

4. Hence m is a model of KB
5. If $KB \models q$, q is true in every model of KB, including m
Backward chaining

Idea: work backwards from the query q:
 to prove q by BC,
 check if q is known already, or
 prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
 1. has already been proved true, or
 2. has already failed

Backward chaining example

Backward chaining example

Forward vs. backward chaining

- FC is **data-driven**, automatic, unconscious processing,
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is **goal-driven**, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Run time of BC can be, in practice, **much less** than linear in size of KB
Effective propositional inference

- Two families of efficient algorithms for propositional inference based on model checking:
- Used for checking satisfiability
- Complete backtracking search algorithms
 - DPLL algorithm (Davis, Putnam, Logemann, Loveland)
 - Improves TT-Entails? Algorithm.
 - Incomplete local search algorithms
 - WalkSAT algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.
- Improvements over truth table enumeration:
 - Early termination
 - Pure symbol heuristic
 - Unit clause heuristic
DPLL algorithm

Improvements over truth table enumeration:

- **Early termination**
 - A clause is true if any literal is true. A sentence is false if any clause is false.
 - E.g., \((\neg B \lor P \lor Q) \land (\neg P \lor B) \land (\neg Q \lor B)\)

- **Pure symbol heuristic**
 - Pure symbol always appears with the same "sign" in all clauses
 - E.g., in the three clauses \((A \lor \neg B), (\neg B \lor \neg C), (C \lor A)\),
 - A and B are pure, C is impure
 - Assign a pure symbol so that their literals are true
DPLL algorithm

Improvements over truth table enumeration:

- **Unit clause heuristic**

 Unit clause: only one literal in the clause or only one literal which has not yet received a value. The only literal in a unit clause must be true. First do this assignments before continuing with the rest (unit propagation!)

The DPLL algorithm

```plaintext
function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of s
symbols ← a list of the proposition symbols in s
return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause is false in model then return false
P, value ← FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols−P, |P = value|model)
P, value ← FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols−P, |P = value|model)
P ← FIRST(symbols); rest ← REST(symbols)
return DPLL(clauses, rest, |P = true|model) or DPLL(clauses, rest, |P = false|model)
```
The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function:
 - The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Steps are taken in the space of complete assignments, flipping the truth value of one variable at a time
- Balance between greediness and randomness.
 - To avoid local minima

The WalkSAT algorithm

```plaintext
function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
        p, the probability of choosing to do a "random walk" move
        max-flips, number of flips allowed before giving up
model ← a random assignment of true/false to the symbols in clauses
for i = 1 to max-flips do
    if model satisfies clauses then return model
    clause ← a randomly selected clause from clauses that is false in model
    with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure
```

Hard satisfiability problems

Under-constrained problems are easy: e.g. n-queens in CSP
In SAT: e.g.,
\[(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)\]

Increase in complexity by keeping the number of symbols fixed and increasing the number of clauses (add constraints)
- \(m\) = number of clauses
- \(n\) = number of symbols
- Hard problems seem to cluster near \(m/n = 4.3\) (critical point)
Hard satisfiability problems

Median runtime for 100 *satisfiable* random 3-CNF sentences, $n = 50$

![Graph showing runtime vs clause/symbol ratio](image)

Circuit-based implementation

- Intelligence without representation? (Brooks)
- Circuit-based agents
 - Reflex agents with internal state
 - Implemented using sequential circuits (logic gates plus registers)
 - Circuits evaluated in dataflow fashion
 - Inference linear in circuit size
 - Circuit size may be exponentially larger than the inference based agent’s KB in some environments
- There are tradeoffs between inference-based and circuit-based agents
- Best of both worlds –
 - Inference based with routinely used inferences compiled into circuits