Multicast Communication

- **Multicast** is the delivery of a message to a group of receivers simultaneously in a single transmission from the source
 - The source sends a message to a group
 - The message then is delivered to all members of the group
- Example applications: video conferencing, multiplayer games, update of replicated data
- We will study two multicast approaches
 - Application-level multicasting
 - Epidemic algorithms

Application-Level Multicasting

- In **application-level multicast**, nodes (i.e. application processes) are organized into an overlay network and multicast messages are sent along multicast trees created on the overlay network
 - Sender is the root of the tree
 - The tree spans all the receivers
- In **network-level multicast**, routers maintain multicast trees created on the **physical network** and forward multicast messages along the trees
- A connection between two nodes in the overlay network may cross several physical links → routing messages within the overlay may not be optimal in comparison to network-level multicast
When A sends a multicast message to B, C, and D using a tree in the overlay network (black), cost = cost(A-B) + cost(B-D) + cost(D-C) = 9 + 24 + 7 = 40.

When A sends a multicast message to B, C, and D using a tree in the physical network (red), cost = 1 + 7 + 10 + 1 + 5 + 1 = 26

Multicast Tree Construction in Chord

- Let S be the initiator of a multicast session
- S generates a (randomly chosen) multicast identifier mid, then looks up succ(mid) and promotes it to be the root of the multicast tree
- If node P wants to join the multicast tree
 - it executes Lookup(mid) to send a join request toward the root
 - it becomes a forwarder in the tree
- When the join request arrives at a node Q
 - If Q has not seen a join request for mid before, it becomes a forwarder and P becomes the child of Q. Q will continue to forward the join request toward the root
 - If Q is already a forwarder for mid, P becomes the child of Q and Q does not forward the join request
- Sending a multicast message:
 - Sender sends the message toward the root by executing Lookup(mid)
 - The root then sends the message along the tree
Epidemic Algorithms (1)

• In large-scale distributed systems, epidemic algorithms are used to rapidly propagate information among a large collection of nodes with no central coordinator
 – No need to set up a multicast tree
• Assumptions
 – All updates for a specific data item are initiated at a single node (i.e., no write-write conflict)
 – We can distinguish old data from new data because data is timestamped or versioned
• Basic idea:
 – When a node is updated, it tries to “infect” other nodes as quickly as possible using pair-wise exchange of updates (like pair-wise spreading of a disease)
 – Eventually, each update should reach every node

Epidemic Algorithms (2)

• Terminology
 – A node is called infected if it holds an update that it is willing to spread to other nodes
 – A node is called susceptible if it has not yet been updated
 – A node is called removed if it is not willing or able to spread its update
• We will study two propagation models
 – Anti-entropy
 – Gossiping
Anti-Entropy

- A node P picks another node Q at random and exchanges updates with Q using one of the three approaches
 - **Push**: P only pushes its updates to Q
 - **Pull**: P only pulls in updates from Q
 - **Push-Pull**: P and Q send updates to each other
- A pure push-based or pull-based approach does not help spread updates quickly
 - Push-based approach is better at the beginning (i.e., when a small number of nodes are infected)
 - Pull-based approach is better towards the end (i.e., when a large number of nodes are infected)
 - Push-pull is the best strategy
- If there are N nodes in the system, it takes O(log(N)) rounds to disseminate an update to all nodes
 - A round is a period in which every node has taken the initiative to exchange updates with another node

Gossiping

- When a node P receives an update, it tries to push the update to an arbitrary other node Q
- If Q was already updated by another node, P stops spreading the update (i.e., becomes removed) with probability 1/k
- Gossiping can rapidly spread updates, but cannot guarantee that all nodes will be updated
 - When there is a large number of nodes, the fraction s of nodes that will remain susceptible satisfy the equation $s = e^{-(k+1)/(1-s)}$
 - Example: when $k=4$, $s < 0.007$
- After a certain time, we can run an anti-entropy protocol to ensure all nodes are updated
The relation between the fraction s of susceptible nodes and the parameter k in gossiping. The graph displays $\ln(s)$ as a function of k.

Removing Data

- Epidemic algorithms are excellent for spreading updates, but deletion of data items is hard
 - When a node deletes a data item, and then receives an old copy of the data item, the old copy will be interpreted as something new
 - The node can’t distinguish between a deleted copy and no copy!
- Solution: use death certificates
 - Treat deletes as updates and spread a death certificate
 - Ever node keeps a record of the deletion using death certificate
 - Death certificates should eventually be cleaned up
Removing Death Certificates

- A death certificate is timestamped when it is created
- Assuming death certificates propagate to all nodes in finite time, death certificates can be removed after this maximum propagation time has elapsed
- To provide hard guarantee that deletions are spread to all nodes, a few nodes maintain **dormant death certificates** that are never thrown away
 - Suppose node P has a dormant death certificate for data item x. If P receives an obsolete update for x, P will spread the death certificate for x again.

Information Aggregation Using Epidemic Algorithms

- Let every node i maintains an initial value x_i
- When node i contacts node j, they each update their value to $(x_i + x_j)/2$
- In the end each node will have computed the average $\bar{x} = \sum x_i / N$, where N is the number of nodes
- What happens if initially $x_i = 1$ if i=1 and $x_i = 0$ if i>1?
 - Eventually each node will compute the average (i.e., $x_i = 1/N$), so every node can estimate the size of the system as being $1/x_i$