Protein Structure Prediction - cont.

11/14/05

Protein Structure Prediction & Modeling

Protein-nucleic acid interactions; protein-ligand docking (no time, sorry!)

Bioinformatics Seminars

Baker Center/BCB Seminars:

Nov 14 Mon 1:10 PM Doug Brutlag, Stanford
Discovering transcription factor binding sites

Nov 15 Tues 1:10 PM Ilya Vakser, Univ Kansas
Modeling protein-protein interactions

both seminars will be in Howe Hall Auditorium

Bioinformatics Seminars

Nov 14 Mon 12:10 IG Seminar in 101 Ind Ed II
Building Using Eyes to Study Developmental Change During Evolution
Jeanne Serb, EEOB

Nov 15 Tues 2:10 PM An Sci Seminar in 1204 Kildee
Lab of Milk & Honey: Bioinformatics for Bovine & Bee
Chris Elsik, Texas A&M

Protein Structure Prediction

Genome Analysis

Mon Protein 3’ structure prediction
Wed Genome analysis & genome projects
Comparative genomics; ENCODE, SNPs, HapMaps, medical genomics
Thur Lab Protein structure prediction
Fri Experimental approaches: microarrays, proteomics, metabolomics, chemical genomics

Reading Assignment (for Mon–Fri)

Mount Bioinformatics

• Chp 11 Genome Analysis
• pp. 495 - 547
• Ck Errata: http://www.bioinformaticsonline.org/help/errata2.html

BCB 544 Additional Readings

Required:

• Gene Prediction
 Burge & Karlin 1997 JMB 268:78
 Prediction of complete gene structures in human genomic DNA
• Human HapMap (Nature 437, Oct 27, 2005)
 Commentary (437:1233)
 http://www.nature.com/nature/journal/v437/n7063/full/4371233a.html
 News & Views (437: 1241)
 http://www.nature.com/nature/journal/v437/n7063/full/4371241a.html

Optional:

• Article (437:1299) A haplotype map of the human genome
 The International HapMap Consortium

D Dobbs ISU - BCB 444/544X
Review last lecture:

Protein Structure Prediction
focus on:
Tertiary Structure

Structural Genomics
- 2 X 10^6 proteins sequences in UniProt
- 3 X 10^4 structures in the PDB

- Experimental determination of protein structure lags far behind sequence determination
- **Goal:** Determine structures of "all" protein folds in nature, using combination of experimental structure determination methods (X-ray crystallography, NMR, mass spectrometry) & computational structure prediction

- ~ 30,000 "traditional" genes in human genome (not counting alternative splicing, miRNAs)
- ~ 3,000 proteins expressed in a typical cell

Structural Genomics Projects
- **TargetDB:** database of structural genomics targets
 http://targetdb.pdb.org

Protein Structure Prediction

- "Major unsolved problem in molecular biology"

- **In cells:** spontaneous
 assisted by enzymes
 assisted by chaperones

- **In vitro:** many proteins fold spontaneously
 & many do not!

Deciphering the Protein Folding Code
- Protein Structure Prediction
 or "Protein Folding" Problem
 given the amino acid sequence of a protein, predict its 3-dimensional structure (fold)

- "Inverse Folding" Problem
 given a protein fold, identify every amino acid sequence that can adopt its 3-dimensional structure

Protein Structure Determination?

- **High-resolution structure determination**
 - X-ray crystallography (<1Å)
 - Nuclear magnetic resonance (NMR) (~1-2.5Å)

- **Lower-resolution structure determination**
 - Cryo-EM (electron-microscopy) ~10-15Å

- **Theoretical Models?**
 - Highly variable - now, some equiv to X-ray!
Tertiary Structure Prediction
Fold or tertiary structure prediction problem can be formulated as a search for minimum energy conformation
- Search space is defined by psi/phi angles of backbone and side-chain rotamers
- Search space is enormous even for small proteins
- Number of local minima increases exponentially of the number of residues

Computationally it is an exceedingly difficult problem!

Ab Initio Prediction
1. Develop energy function
 - bond energy
 - bond angle energy
 - dihedral angle energy
 - van der Waals energy
 - electrostatic energy
2. Calculate structure by minimizing energy function
 (usually Molecular Dynamics or Monte Carlo methods)

- Ab initio prediction - not practical in general
 - Computationally? very expensive
 - Accuracy? Usually poor for all but short peptides
 (but see Baker review!)

Ab initio prediction - provides both folding pathway & folded structure

Comparative Modeling
Two primary methods
1) Homology modeling
2) Threading (fold recognition)

- Note: both rely on availability of experimentally determined structures that are "homologous" or at least structurally very similar to target

Homology Modeling
1. Identify homologous protein sequences (PSI-BLAST)
2. Among available structures, choose the one with closest sequence match to target as template
 (combine steps 1 & 2 by using PDB-BLAST)
3. Build model by placing residues in corresponding positions of homologous structure & refine by "tweaking"

- Homology modeling - works "well"
 - Computationally? not very expensive
 - Accuracy? higher sequence identity \(\Rightarrow\) better model

Threading - Fold Recognition
Identify "best" fit between target sequence & template structure
1. Develop energy function
2. Develop template library
3. Align target sequence with each template & score
4. Identify best scoring template (1D to 3D alignment)
5. Refine structure as in homology modeling

- Threading - works "sometimes"
 - Computationally? Can be expensive or cheap, depends on energy function & whether "all atom" or "backbone only" threading
 - Accuracy? in theory, should not depend on sequence identity (should depend on quality of template library & "luck")
 - But, usually higher sequence identity \(\Rightarrow\) better model

Threading: more details
1. Align target sequence with template structures (fold library) from the Protein Data Bank (PDB)
2. Calculate energy score to evaluate goodness of fit between target sequence & template structure
3. Rank models based on energy scores
Threading Goals & Issues

- Find “correct” sequence-structure alignment of a target sequence with its native-like fold in PDB
- Structure database - must be complete: no decent model if no good template in library!
- Sequence-structure alignment algorithm:
 - Bad alignment → Bad score!
- Energy function (scoring scheme):
 - must distinguish correct sequence-fold alignment from incorrect sequence-fold alignments
 - must distinguish “correct” fold from close decoys
- Prediction reliability assessment - how determine whether predicted structure is correct (or even close?)

Threading: Structure database

- Build a template database
 (e.g., ASTRAL domain library derived from PDB)
- Supplement with additional decoys, e.g., generated using ab initio approach such as Rosetta (Baker)

Threading: Energy function

- Two main methods (and combinations of these)
 - Structural profile (environmental)
 physico-chemical properties of aa’s
 - Contact potential (statistical)
 based on contact statistics from PDB
 (Miyazawa & Jernigan - Jernigan now at ISU)

Protein Threading: typical energy function

- MTKLRLNGKTKGETTTEAVDAATAEKVFQYANDNGVDGEWTYTE
- What is "probability" that two specific residues are in contact?
- How well does a specific residue fit structural environment?
- Alignment gap penalty?
- Total energy: $E_s + E_c + E_g$
- Find a sequence-structure alignment that minimizes the energy function

New today:
Protein Structure Prediction

A Rapid Threading Approach for Protein Structure Prediction

- Kai-Ming Ho, Physics
- Haibo Cao
- Yungok Ihm
- Zhong Gao
- James Morris
- Cai-zhuang Wang
- Drena Dobbs, GDCB
- Jae-Hyung Lee
- Michael Terribilini
- Jeff Sander
Protein Structure Prediction - cont.

Template structure (reduced) representation

Template structure \(C \) (N \times N contact matrix)
- \(C_{ij} = 1 \), if \(r_{ij} \leq 6.5 \text{ Å} \) (contact)
- \(C_{ij} = 0 \), otherwise (non-contact)

Energy function
Assumption: At residue level, pair-wise hydrophobic interaction is dominant:
\[
E = \sum_{i,j} C_{ij} U_{ij}
\]
- \(C_{ij} \): contact matrix
- \(U_{ij} = U(\text{residue } I, \text{residue } J) \)
 - MJ matrix: \(U = U_{ij} \)
 - LTW: \(U = Q_i Q_j \)
 - HP model: \(U = (1,0) \)

Contact energy: pairwise interactions
Miyazawa-Jernigan (MJ) matrix:
Statistical potential:
210 parameters
\[
M = \begin{pmatrix}
0.46 & 0.54 & -0.20 & 0.49 & -0.01 & 0.06 & 0.57 & 0.01 & 0.03 & -0.08 & 0.52 & 0.18 & 0.10 & -0.01 & -0.04
\end{pmatrix}
\]
Li-Tang-Wingreen (LTW):
Factorize the MJ interaction matrix to reduce the number of parameters from 210 to 20 \(q \) values associated with 20 amino acids

Residue interaction scheme (Ho)
Interaction "counts" only if two hydrophobic amino acid residues are in contact
Miyazawa-Jernigan (MJ) model: inter-residue contact energy \(M(i,j) \) is a quasi-chemical approximation; based on contact statistics extracted from known protein structures in PDB

Li-Tang-Wingreen (LTW): Factorize the MJ interaction matrix to reduce the number of parameters from 210 to 20 \(q \) values associated with 20 amino acids

Residue interaction scheme
- \(q_i^2 \) - solubility
- \(Q_i \) - hydrophobicity
- \(C \) - contact matrix

Contact Energy:
\[
E = \sum (Q_i C_i + \beta Q_i)
\]

Trick for Fast Threading?
- ALKKGF_HFDTS
- Sequence - Structure (1D - 3D problem)
- Sequence - Contact Matrix (1D - 2D problem)
- >Sequence - 1D Profile (1D - 1D problem)
1D profile? first eigenvector of contact matrix

Hydrophobic Contacts

1. $\mathbf{CT} = \mathbf{C} \mathbf{T}$
2. $\mathbf{C} = \sum \lambda_i \mathbf{v}_i \mathbf{v}_i^T$

C: contact matrix

λ_i: i-th eigenvalue of C

v_i: i-th eigenvector

T: protein sequence of the template structure

r_i: fraction of hydrophobic contacts from i-th eigenvector

Weights of eigenvectors for real proteins

1. First eigenvector of contact matrix dominates the overlap between sequence and structure
2. Higher ranking (rank > 4) eigenvectors are "sequence blind"

Fast threading alignment algorithm

1. **1D Profile** $\mathbf{P} = \mathbf{V}_1$
2. Maximize the overlap between the Sequence (\mathbf{S}) and the profile (\mathbf{P}) allowing gaps

New profile $\mathbf{P} = \mathbf{C} \mathbf{P}$

Calculate contact energy using the alignment \mathbf{E}

Parameters for alignment?

Gap penalty:
- Insertion/deletion in helices or strands strongly penalized; small penalties for in/dels in loops
- but, gap penalties do not count in energy calculation

Size penalty:
- If a target residue \mathbf{A} and aligned template residue differ in radius by $> 0.5 \text{Å}$ and if the residue is involved in > 2 contacts, alignment contribution is penalized
- but, size penalties do not count in energy calculation

How incorporate secondary structure?

Predict secondary structure of target sequence (PSIPRED, PROF, JPRED, SAM, GOR V)

- $N_+ = $ total number of matches between the predicted secondary structure and the template structure
- $N_- = $ total number of mismatches
- $N_s = $ total number of residues selected in alignment

"Global fitness" $f = 1 - (N_+ - N_-) / N_s$

$E_{modify} = f \cdot E_{threading}$
Finally, calculate "relative" score:

How much better is this "fit" than random?

\[E_{\text{modify}} : \text{Sequence vs Structure} \]

(adjusted for 2' structure match)

\[E_{\text{shuffled}} : \text{Shuffled Sequence vs Structure} \]

(randomize amino acid order in target sequence 50-200 times, calc. score for each shuffled sequence, then take average)

\[E_{\text{relative}} = E_{\text{modify}} - E_{\text{shuffled}} \]

Performance Evaluation?

in a "Blind Test"

CASP5 Competition

(Critical Assessment of Protein Structure Prediction)

\[\text{Given: Amino acid sequence} \]

\[\text{Goal: Predict 3-D structure} \]

(before experimental results published)

Typical Results: (well, actually, our BEST Results):

HO = top-ranked CASP5 prediction for this target!

Target 174 PDB ID = 1MG7

Predicted Structure Actual Structure

Overall Performance in CASP5 Contest

Ho = 8th out of ~180 (by M. Levitt, Stanford)

FR Fold Recognition

(targens manually assessed by Nick Grishin)

<table>
<thead>
<tr>
<th>Rank</th>
<th>E-Score</th>
<th>NgNW</th>
<th>NpNW</th>
<th>NgNW</th>
<th>NpNW</th>
<th>Group-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.26</td>
<td>9.00</td>
<td>12.00</td>
<td>9</td>
<td>12</td>
<td>Ginalski</td>
</tr>
<tr>
<td>2</td>
<td>21.64</td>
<td>7.00</td>
<td>12.00</td>
<td>7</td>
<td>12</td>
<td>Skolnick</td>
</tr>
<tr>
<td>3</td>
<td>19.55</td>
<td>8.00</td>
<td>12.50</td>
<td>9</td>
<td>14</td>
<td>Baker</td>
</tr>
<tr>
<td>4</td>
<td>16.88</td>
<td>6.00</td>
<td>10.00</td>
<td>6</td>
<td>10</td>
<td>BIOINFO.PL</td>
</tr>
<tr>
<td>5</td>
<td>15.25</td>
<td>7.00</td>
<td>7.00</td>
<td>7</td>
<td>7</td>
<td>Shortle</td>
</tr>
<tr>
<td>6</td>
<td>14.56</td>
<td>5.00</td>
<td>11.50</td>
<td>7</td>
<td>13</td>
<td>BAKER-Rosetta</td>
</tr>
<tr>
<td>7</td>
<td>13.49</td>
<td>4.00</td>
<td>11.00</td>
<td>4</td>
<td>11</td>
<td>Brooks</td>
</tr>
<tr>
<td>8</td>
<td>11.34</td>
<td>3.00</td>
<td>6.00</td>
<td>3</td>
<td>6</td>
<td>Ho-Kai-Ming</td>
</tr>
<tr>
<td>9</td>
<td>10.45</td>
<td>3.00</td>
<td>5.50</td>
<td>3</td>
<td>6</td>
<td>Jones-NewFold</td>
</tr>
</tbody>
</table>

FR NgNW = number of good predictions without weighting for multiple models

FR NpNW = number of total predictions without weighting for multiple models

Protein Structure Prediction

Servers & Software

Three basic approaches:

1) Homology modeling (need >30% sequence identity)

 PredictProtein META, SWISS-MODEL, Cn3D

2) Threading (if <30% sequence identity)

 Best? Hmm - see CASP & EVA

3) Ab initio (if no template available & many CPUs)

 Best? Rosetta (Baker) - see CASP & EVA

Protein Structure Prediction

Servers & Software

Three basic approaches:

1) Homology modeling (need >30% sequence identity)

 PredictProtein META, SWISS-MODEL, Cn3D

2) Threading (if <30% sequence identity)

 Best? Hmm - see CASP & EVA

3) Ab initio (if no template available & many CPUs)

 Best? Rosetta (Baker) - see CASP & EVA