Nondeterministic Complexity Classes

Let \(t : \mathbb{N} \to \mathbb{N} \) be a function. We say that a nondeterministic program \(P \) is \(t(n) \)-time bounded, if for every \(n \in \mathbb{N} \), for every \(x \in \Sigma^n \), every path of \(P \) on \(x \) stops within \(t(n) \) steps.

Similarly a nondeterministic program \(P \) is \(t(n) \)-space bounded, if for every \(n \in \mathbb{N} \), for every \(x \in \Sigma^n \), every path of \(P \) on \(x \) uses at most \(s(n) \) amount of memory.

Now we have the following nondeterministic complexity classes.

The class \(\text{NTIME}(t(N)) \) is the collection of all languages that are accepted by a \(t(n) \)-time bounded nondeterministic program. Similarly, \(\text{NSPACE}(s(N)) \) is the collection of all languages that are accepted by a \(s(n) \)-space bounded nondeterministic program.

Now \(\text{NP} = \bigcup_{k>0} \text{NTIME}(n^k) \), \(\text{NL} = \bigcup_{c>0} \text{NSPACE}(c \log n) \), and \(\text{NPSPACE} = \bigcup_{k>0} \text{NSPACE}(n^k) \).

We now define another complexity class \(\text{PV} \). A language \(L \) belongs to the class \(\text{PV} \), if there is a polynomial \(p(.) \) and a polynomial-time computable function \(f \) such that

\[
\begin{align*}
x \in L &\Rightarrow \exists y \in \{0, 1\}^{\leq p(|x|)}, f(x, y) = 1, \\
x \notin L &\Rightarrow \forall y \in \{0, 1\}^{\leq p(|x|)}, f(x, y) = 0.
\end{align*}
\]

Thus if \(x \) is in \(L \), then there is a string \(y \) such that \(f(x, y) = 1 \). Note that there could be more than one \(y \) for which \(f(x, y) = 1 \). Such string \(y \) is called witness/proof of \(x \). The constraint that \(y \in \{0, 1\}^{\leq p(|x|)} \) can be interpreted as “\(y \) is a short witness/prooof”.

\(\text{PV} \) stands for Polynomial-time verifiable.

Theorem \(\text{NP} = \text{PV} \).

Before proving this theorem, let us first show that \(\text{SAT} \) is in \(\text{PV} \). Suppose, I claim that a Boolean formula \(\phi \) is satisfiable. How can I convince you that I am not lying? What “proof” I should produce? We want this “proof” should be “short” and you should be able to verify the correctness of my proof “quickly”.

Any satisfying assignment serves as a proof. Verification is checking whether the assignment indeed satisfies the formula. Observe that verification can be done “quickly” (in polynomial time).

Consider the following function. Let \(\phi \) be a Boolean formula and \(a \) be a truth assignment. \(f(\phi, a) = 1 \) if \(a \) is a satisfying assignment for \(\phi \). Else \(f(\phi, a) = 0 \).

If a formula \(\phi \) is satisfiable, then there is an assignment \(a \) such that \(f(\phi, a) = 1 \). Observe that \(|a| \leq |\phi| \). If a formula \(\phi \) is not satisfiable, then for every assignment \(a \), \(f(\phi, a) = 0 \). This shows that \(\text{SAT} \) is in \(\text{PV} \). Can you show that Hamiltonian is in \(\text{PV} \)?
Now we will show that $PV \subseteq NP$. Let L be a language in PV. Thus there is a polynomial p and a polynomial-time function f such that

$$x \in L \iff \exists y \in \Sigma^{\leq p(|x|)} f(x, y) = 1.$$

Let q be a polynomial such that f can be computed in time $q(n)$. Consider the following non-deterministic algorithm for L.

1. Input x.
2. Guess y from $\Sigma^{\leq p(|x|)}$.
3. If $f(x, y) = 1$ ACCEPT, else REJECT.

Let $|x| = n$. If $x \in L$, then there is a string y in $\Sigma^{\leq p(n)}$ such that $f(x, y) = 1$. In Step 2, some computation path will guess this y, and that computation path accepts x. So above program accepts x.

If $x \not\in L$, then for every $y \in \Sigma^{\leq p(n)}$, $f(x, y) = 0$. Any computation path of the above program accepts only when it guesses a string y from $\Sigma^{\leq p(n)}$ such that $f(x, y) = 1$. Thus when $x \not\in L$, every computation path of the above program rejects x. So above program does not accept x.

Size of $\Sigma^{\leq p(n)}$ is $2^{p(n)+1}$. Thus step 2 takes $O(p(n))$ steps. The function f is $q(n)$-time computable. We are evaluating the value of f on x and y. Length of x is n and length of y is at most $p(n)$. Thus we are evaluating f on an input whose size is atmost $n + p(n)$. This step takes $q(n+p(n))$ time. Thus the total time is $O(p(n) + q(n+p(n)))$. Since both q and p are polynomials, this time is bounded by a polynomial. Thus L is in PV.

We will skip the other direction of the proof, $NP \subseteq PV$.

Completeness

A language A is polynomial-time many-one reducible to B, $A \leq^p_\text{m} B$, if there is a total polynomial-time computable function f such that $x \in A$ if and only if $f(x) \in B$.

If $A \leq^p_\text{m} B$ and $B \in P$, then $A \in P$.

A language L is NP-complete if $L \in NP$ and for every $L' \in NP$, $L' \leq^p_\text{m} L$.

Most prominent NP-complete problem is SAT. If SAT is in P then, $NP = P$. Thus $P = NP$ if and only if $SAT \in P$.

In addition to SAT, thousands of problems that arise in practice turn out be NP-complete. Some other example of NP-complete problems: Hamiltonian, Vertex Cover, Clique, Traveling Sales Person.

Similarly, we can define EXP-completeness. A language L is EXP-complete if $L \in EXP$ and for every $L' \in EXP$, $L' \leq^p_\text{m} L$.

Hierarchy Theorems

We will state time and hierarchy theorems without proof.

Let t and T be two functions from \mathbb{N} to \mathbb{N} such that $t(n) \log t(n) \in o(T(n))$. There is a language in $DTIME(T(n))$ that is not in $DTIME(t(n))$, and thus $DTIME(t(n)) \subset DTIME(T(n))$.

2
For example, $\text{DTIME}(n) \subset \text{DTIME}(n^2)$, and $P \subset \text{EXP}$.

Let s and S be two functions from \mathbb{N} to \mathbb{N} such that $s(n) \in o(S(n))$. There is a language in $\text{DSPACE}(S(n))$ that is not in $\text{DSPACE}(s(n))$, and thus $\text{DSPACE}(s(n)) \subset \text{DSPACE}(S(n))$.

Using the time hierarchy theorem, we can show that EXP-complete languages are not in P. Let L be a EXP-complete language. By the time-hierarchy theorem, there is a language L' in EXP that is not in P. Since L is EXP-complete L' polynomial-time many-one reduces to L. So if L belong to P, then L' also belongs to P. Since L' does not belong to P, it follows that L doe snot belong to P. Thus EXP-complete languages do not belong to P.