1 Rice’s Theorem

Let \(C \) be a property of languages. Examples of \(C \) are: \textit{emptiness} (Is the language empty?), \(= \Sigma^* \) (Is the language equal to \(\Sigma^* \)), \textit{finiteness} (Is the language finite?). Given a property \(C \), the index set of \(C \) is

\[I_C = \{ e \mid L(P_e) \text{ has the property } C \}. \]

For example, if the property we are interested is \textit{emptiness}, then the index set is

\[\{ e \mid L(P_e) \text{ is empty } \}. \]

Given a property \(C \), we are interested in the question \textit{is} \(I_C \) \textit{decidable}? We can use Rice’s theorem to answer this question.

Rice’s Theorem Given a property \(C \), its index set \(I_C \) is decidable if and only if \(I_C \) either the empty set or the set of all the programs.

As an application of Rice’s theorem, consider the following set.

\[I_{\text{empty}} = \{ e \mid L(P_e) \text{ is empty} \}. \]

To prove that this set is undecidable we have to show i) \(I_{\text{empty}} \) is an index set ii) \(I_{\text{empty}} \) is not empty, and iii) \(I_{\text{empty}} \) is not the set of all programs. It is obvious that \(I_{\text{empty}} \) is an index set. It is the index set of the property “emptiness”. \(I_{\text{empty}} \) is not empty as there are programs whose languages are empty (example: a program that does not accept any string). It is also clear that \(I_{\text{empty}} \) is not the set of all the program as there are programs whose languages are not empty (example: a program that accepts every string). Hence by Rice’s theorem \(I_{\text{empty}} \) is undecidable.

Using Rice’s theorem we can show that the following languages are not Turing decidable.

\[I_{\text{All}} = \{ e \mid L(P_e) = \Sigma^* \}, \]

\[I_{\text{even}} = \{ e \mid L(P_e) \text{ is the set of all even length strings} \}, \]

\[I_{\text{td}} = \{ e \mid L(P_e) \text{ is Turing decidable} \}. \]

Languages below are Turning Decidable as they equal \(\mathbb{N} \).

\[I_{\text{ta}} = \{ e \mid L(P_e) \text{ is Turing acceptable} \}, \]

\[I_{\text{count}} = \{ e \mid L(P_e) \text{ is countable} \}. \]
We will not prove Rice’s theorem. Finally, we note that Rice’s theorem applies to index sets only. For example, the following sets are not index sets

\[L_{\text{HaltAll}} = \{ e \mid P_e \text{Halts on every input} \}, \]
\[L_{\text{equal}} = \{ \langle e, j \rangle \mid L(P_e) = L(P_j) \}. \]

2 Uncomputable Functions

A function \(f : \mathbb{N} \to \mathbb{N} \) is computable, if there is a program \(P \) such that on input \(x \), the program \(P(x) \) outputs \(f(x) \) and accepts.

Given a language \(L \), the characteristic function of \(L \) is the following function \(\chi_L : \Sigma^* \to \{0, 1\} \):

\[\chi_L(x) = 1 \text{ if } x \in L, \chi_L(x) = 0 \text{ if } x \notin L. \]

It is easy to show that a language \(L \) is Turing Decidable if and only if \(\chi_L \) is computable.

Let \(L \) be an infinite subset of natural numbers. We know that there is a bijection from \(\mathbb{N} \) to \(L \). In fact, there are infinitely many bijections from \(\mathbb{N} \) to \(L \) (You can actually show that the number of bijections from \(\mathbb{N} \) to \(L \) is not countable. Think about the proof). Is there a bijection from \(\mathbb{N} \) to \(L \) that is computable? Now we will give an example of language \(L \) for which there is no computable bijection from \(\mathbb{N} \) to \(L \).

Recall that

\[L_{\text{HaltAll}} = \{ e \mid P_e \text{ halts on every input} \}. \]

Since \(L_{\text{HaltAll}} \subseteq \mathbb{N} \), it is countable. Thus there is a function \(f : \mathbb{N} \to L_{\text{HaltAll}} \) and \(f \) is a bijection. Is this function computable? We will now show that every bijection from \(\mathbb{N} \) to \(L_{\text{HaltAll}} \) is not computable.

Assume that there exists a computable function \(f : \mathbb{N} \to L_{\text{HaltAll}} \) such that \(f \) is a bijection.

Let \(Q \) be a program that computes \(f \).

Consider the following program:

1. Input \(e \).
2. Run \(Q \) on input \(e \) to compute \(f(e) \).
3. Run \(P_{f(e)} \) on input \(e \).
4. If \(P_{f(e)} \) accepts, then REJECT \(e \)
5. If \(P_{f(e)} \) rejects, then ACCEPT \(e \).

Let \(l \) be the Gödel number of the above program. That is, the above program is the same as \(P_l \). We first claim that \(l \in L_{\text{HaltAll}} \). Consider any input \(e \) to \(P_l \). Since \(f \) is a computable, \(Q \) halts on every input. Thus Step 2 of \(P_l \) always terminates. In Step 3, \(P_l \) runs \(P_{f(e)} \). Since \(f(e) \in L_{\text{HaltAll}} \), \(P_{f(e)} \) halts on every input. Thus \(P_{f(e)} \) halts on input \(e \). Thus \(P_l \) halts on every input. Thus \(l \in L_{\text{HaltAll}} \).

Since \(f \) is a bijection from \(\mathbb{N} \) to \(L_{\text{HaltAll}} \) and \(l \in L_{\text{HaltAll}} \), there is a natural number \(k \) such that \(f(k) = l \). Thus \(P_l = P_{f(k)} \).

Now consider the behavior of \(P_l \) on input \(k \). Program \(P_l \) on input \(k \) first computes \(f(k) \) and runs \(P_{f(k)}(k) \). If \(P_{f(k)} \) accepts \(k \), then \(P_l \) rejects \(k \). If \(P_{f(k)} \) rejects \(k \), then \(P_l \) accepts \(k \). However,
\(l = f(k) \). This means that if \(P_l \) accepts \(k \), then \(P_l \) rejects \(k \), and if \(P_k \) rejects \(k \), then \(P_l \) accepts \(k \). This is a contradiction. Thus \(f \) is not computable.

Now we will precisely characterize languages \(L \) for which there is a computable bijection from \(\mathbb{N} \) to \(L \). We will show that an infinite language \(L \) is Turing acceptable if and only if there is a computable bijection \(f \) from \(\mathbb{N} \) to \(L \). From this it follows that \(L_{HALTALL} \) is not Turing Acceptable.

Let \(f \) be a computable bijection from \(\mathbb{N} \) to \(L \). We will show that \(L \) is Turing acceptable. Consider the following program for \(L \).

1. Input \(e \).
2. Set \(n = 0 \).
3. If \(f(n) \) equals \(e \), then ACCEPT and halt.
4. Else, \(n = n + 1 \) and GoTo Step 3.

Suppose \(e \in L \), let \(m \) be the smallest number such that \(f(m) = e \). The number \(m \) must exist, because \(f \) is a bijection from \(\mathbb{N} \) to \(L \). For every \(\ell < m \), \(f(m) \neq e \). The above program keeps on incrementing the value of \(n \) starting from zero. This is because since \(f \) is computable, there is a program that always halts and outputs the value of \(f \) on any number, and so Step 3 can be done by a halting program. When the value of \(n \) becomes \(m \) it discovers that \(f(m) = e \) and the program accepts \(e \). This if \(e \in L \), then the above program accepts.

Note that the above program accepts a number \(e \) only when discovers a number \(m \) for which \(f(m) = e \). Since \(f \) is a function from \(\mathbb{N} \) to \(L \), if \(e \notin L \), for every \(m \), \(f(m) \neq e \). Thus if \(e \notin L \), then the above program does not accept \(e \). This shows that \(L \) is Turing acceptable.

We will skip the proof of the other direction.