1 Reductions

Recall that

\[\text{HaltingProblem} = \{ \langle e, w \rangle \mid P_e \text{ halts on } w \}, \]

and

\[K' = \{ e \mid P_e \text{ halts on } e \}. \]

We showed that \text{HaltingProblem} is not Turing decidable. Let us recall the proof: Assume that \text{HaltingProgram} is Turing decidable. Then there is a program (or method) \(Q \) for \text{HaltingProblem} and \(Q \) always halts. The following program, that makes a subroutine call to \(Q \), decides \(K' \).

1. Input \(e \)
2. If \(Q(\langle e, e \rangle) \) accepts, ACCEPT
3. If \(Q(\langle e, e \rangle) \) rejects, REJECT

Since we know that \(K' \) is not Turing Decidable, it follows that \text{HaltingProblem} is not Turing Decidable.

Essentially, we showed the following: “If there exists a halting program/method \(Q \) for \text{HaltingProblem}, then there exists a program \(P \) that makes subroutine calls to \(Q \), and \(P \) decides \(K' \).” We have reduced the \text{HaltingProblem} to \(K' \). Suppose \(A \) and \(B \) are two languages, informally we say that \(A \) reduces to \(B \), if the following statement holds: “If there exists a halting program/method \(Q \) for \(B \), then either exists a halting program \(P \) that makes subroutine calls to \(Q \), and \(P \) decides \(A \).”

We can use reduction as a tool to show that many languages are not decidable. The general idea is the following: Suppose you want to show that a language \(L \) is not Turing decidable. Pick a language \(A \) that is known to be undecidable. Show that \(A \) reduces to \(L \). I.e., show that if there is a halting program/method for \(L \), then there is a halting program for \(A \). Since we know that \(A \) is undecidable, it follows that there can not exist a halting program for \(L \), and thus \(L \) is undecidable.

Consider the following language.

\[I_{ne} = \{ e \mid L(P_e) \neq \phi \}. \]

Thus \(I_{ne} \) is the set of all programs whose language is not empty. We will show that \(I_{ne} \) is undecidable by giving a reduction from \text{HaltingProblem}. Let \(Q \) be method for \(I_{ne} \). Our goal is to write a program \(P \) that makes subroutine calls to \(Q \) and decides \text{HaltingProblem}.
We will first informally describe the idea behind the reduction. Suppose we were given \(\langle e, w \rangle \) and would like to know whether \(P_e \) halts on \(w \) or not. We are allowed to call the method \(Q \). I.e., we are allowed to build a program \(P' \) and by calling \(Q \) we will know whether \(L(P') \) is empty or not. This information should enable us to tell whether \(P_e \) halts on \(w \) or not. This means that whether \(L(P') \) is empty or not should depend on whether \(P_e \) halts on \(w \) or not. How should \(P' \) look like? Below is the code of \(P' \):

1. Input \(x \).
2. Run \(P_e \) on \(w \).
3. Accept \(x \).

What is the language accepted by \(P' \)? On every input, \(P' \) first runs \(P_e \) on \(w \). If \(P_e \) halts on \(w \), then \(P' \) accepts its input. If \(P_e \) does not halt on \(w \), then \(P' \) runs for every on every input. Thus if \(P_e \) halts on \(w \), then \(P' \) accepts every input. Thus \(L(P') \neq \emptyset \). On the other hand, if \(P_e \) does not halt on \(w \), then \(P' \) does not accept any input. Thus \(L(P') = \emptyset \). Thus knowing whether \(L(P') \) is empty or not tells us whether \(P_e \) halts on \(w \) or not.

Below is a more formal proof. Let \(Q \) be a method for \(I_{ne} \). Below is a program that decides \(\text{HaltingProblem} \) by calling the method \(Q \).

1. Input \(\langle e, w \rangle \).
2. Set \(P' \) to the following program
 (a) Input \(x \);
 (b) Run \(P_e \) on \(w \)
 (c) Accept \(x \).
3. Compute the Godel number \(\ell \) of \(P' \).
4. If \(Q(\ell) \) accepts, ACCEPT \(\langle e, w \rangle \).
5. If \(Q(\ell) \) rejects, REJECT \(\langle e, w \rangle \).

It is easy to verify that the above program halts on every input and decides \(\text{HaltingProblem} \). Since \(\text{HaltingProblem} \) is not Turing decidable, it follows that \(I_{ne} \) is not Turing Decidable.

Now consider the following language.

\[
I_{inf} = \{ e \mid L(P_e) \text{ is infinite} \}.
\]

We can show that \(I_{inf} \) is also undecidable by giving a reduction from \(\text{HaltingProblem} \) to \(I_{inf} \).

Let \(Q \) be a method for \(I_{inf} \). Our goal is to write a program that decides \(\text{HaltingProblem} \) by making subroutine calls to \(Q \). Consider the same program as above. If \(P_e \) halts on \(w \), then \(P' \) accepts \emph{every} input. This implies that \(L(P') \) is actually \(\Sigma^* \) thus is infinite. If \(P_e \) does not halt on \(w \), then \(P' \) does not accept \emph{any} input. This implies that \(L(P') \) is empty thus is not infinite. Thus knowing whether \(L(P') \) is infinite or not enables us to tell whether \(P_e \) halts on \(w \) or not. Thus \(I_{inf} \) is not Turing Decidable.
Next we consider the following language.

\[I_{\text{Core}} = \{ e \mid P_e \text{ on } \text{on some input outputs "CORE DUMP"} \} \]

We show that \(I_{\text{Core}} \) is not decidable by giving a reduction from \textit{HaltingProblem}. Let \(Q \) be a method for \(I_{\text{core}} \). Consider the following program:

1. \(\langle e, w \rangle \).

2. Set \(P' \) to the following program:
 (a) Input: \(x \).
 (b) Run \(P_e \) on \(w \).
 (c) Output “CORE DUMP” and stop.

3. Compute the Godel number \(\ell \) of \(P' \).

4. If \(Q(\ell) \) accepts, ACCEPT \(\langle e, w \rangle \).

5. If \(Q(\ell) \) rejects, REJECT \(\langle e, w \rangle \).

It can be easily seen that if \(P_e \) halts on \(w \), then \(P' \), on any input, writes “CORE DUMP”. If \(P_e \) does not halt on \(w \), then \(P' \) never writes “CORE DUMP” on any input (except for a small subtlety: What if \(P_e \) outputs “CORE DUMP” on input \(w \)?). Thus the able program correctly decides \textit{HaltingProblem}. Thus \(I_{\text{core}} \) is not Turing Decidable.

Consider the following language:

\[I_{\text{equal}} = \{ \langle i, j \rangle \mid L(P_i) = L(P_j) \} \]

We can show that \textit{HaltingProblem} reduces to \(I_{\text{equal}} \). Let \(Q \) be a method for \(I_{\text{equal}} \). Let \(R \) be a fixed program that accepts every input and let \(r \) be its Godel Number. Thus \(L(R) = L(P_r) = \Sigma^* \).

Consider the following program for \textit{HaltingProblem}.

1. Input \(\langle e, w \rangle \)

2. Set \(P' \) to the following program:
 (a) Input: \(x \).
 (b) Run \(P_e \) on \(w \).
 (c) accept \(x \)

3. Compute the Godel number \(\ell \) of \(P' \).

4. If \(Q(\langle \ell, r \rangle) \) accepts, ACCEPT \(\langle e, w \rangle \).

5. If \(Q(\langle \ell, r \rangle) \) rejects, REJECT \(\langle e, w \rangle \).

Suppose \(P_e \) halts on \(w \). Note that \(P' \) accepts every input. Thus \(L(P') = L(R) = \Sigma^* \). This \(L(P_\ell) = L(P_r) = \Sigma^* \). Thus \(\langle \ell, r \rangle \in I_{\text{equal}} \). Suppose that \(P_e \) does not halt on \(w \). Note that \(P' \) does not accept any input. This \(L(P') = L(P_r) = \emptyset \). Thus \(\langle \ell, r \rangle \notin I_{\text{equal}} \). Thus knowing whether \(\langle \ell, r \rangle \) belong to \(I_{\text{equal}} \) or not enables us to decide whether \(P_e \) halts on \(w \) or not. This shows that \(I_{\text{equal}} \) is not Turing Decidable.