Submission Instructions
This assignment must be submitted by 5 PM of its due date at the CS 511 drop box.

Reading Assignment
Chapter 8 of K & T.

Problem Set

1. (10 points) Suppose you have a procedure P which given a graph G and an integer K runs in polynomial time and returns “yes” if G has an independent set of size K and returns “no” otherwise. Show that you can use P to develop a polynomial-time algorithm that returns an independent set of size K in G, if one exists.

2. (10 points) For each of the problems below, prove that it is NP-complete by showing that it is a generalization of some NP-complete problem.

 (a) (3 points) SUBGRAPH ISOMORPHISM: Given input two undirected graphs G and H, determine whether or not G is a subgraph of H. That is, determine whether by deleting certain vertices and edges of H we obtain a graph that is, up to renaming of vertices, identical to G.

 (b) (3 points) SPARSE SUBGRAPH: Given a graph G and two integers a and b, does G have a set of a vertices such that there are at most b edges between them.

 (c) (4 points) RELIABLE NETWORK: We are given two $n \times n$ matrices, a distance matrix d_{ij} and a connectivity requirement matrix r_{ij}, as well as a budget b. Does there exist a graph $G = (V = \{1, 2, \ldots, n\}, E)$ such that (i) the total cost
of all edges is at most b and (ii) between any two distinct vertices i and j there are r_{ij} vertex-disjoint paths. \textit{(Hint: Suppose that all d_{ij}’s are 1 or 2, $b = n$, and all r_{ij}’s are 2. Which well known NP-complete problem is this?)}

3. (10 points) Exercise 2, page 505.

5. (10 points) Exercise 7, page 507.

6. (10 points) Exercise 9, page 508.

\textbf{Note.} We reserve the right to grade only a subset of the problems assigned. Which problems will be graded will be decided after the submission deadline.