Tree Decompositions and Tree-Width

CS 511

Iowa State University

December 6, 2010
Definition

A \textit{tree decomposition} of a graph $G = (V, E)$ consists of a tree T and a subset $V_t \subseteq V$ for every node $t \in T$, such that the collection $\{V_t : t \in T\}$ satisfies:

- (Node coverage) For every $v \in V$, there is some node t in T such that $v \in V_t$.
- (Edge coverage) For every $e \in E$, there is some node t in T such that V_t contains both endpoints of e.
- (Coherence) Let t_1, t_2, t_3 be three nodes in T such that t_2 lies on the path between t_1 and t_3 in T. Then, if $v \in V$ belongs to both V_{t_1} and V_{t_3}, v must also belong to V_{t_2}.
Tree-Width

Definition

The width of tree decomposition \((T, \{V_t : t \in T\})\) is

\[
\text{width}(T, \{V_t : t \in T\}) = \max_{t \in T} |V_t| - 1.
\]

Definition

The tree-width of \(G\), denoted \(\text{tw}(G)\), is the minimum width of a tree decomposition of \(G\).
Complexity of Tree-Width

Let $TW(k)$ be the class of graphs G such that $tw(G) \leq k$.

Tree-Width (Decision Version)

Input: An undirected graph G and an integer k.

Question: Is $G \in TW(k)$?

Theorem

Tree-width (decision version) is NP-complete.
Complexity of Tree-Width

Lemma

For every positive integer k, $TW(k)$ is minor closed.

Corollary (Tree-width is fixed-parameter tractable)

For every fixed k, the problem of determining whether or not $G \in TW(k)$ can be solved in $O(f(k) \cdot n^{O(1)})$ time.

- Corollary follows from Robertson & Seymour’s graph minor results.
 - $f(k)$ is superpolynomial, but depends only on k.
- Running time can be improved to $O(n)$ for each fixed k.
 - Simple $O(n)$ algorithms exist for $k \leq 4$.
Notation

Let \((T, \{V_t : t \in T\})\) be a tree decomposition of \(G\). Then, if \(T'\) is a subgraph of \(T\), \(G_{T'}\) denotes the subgraph induced by the set \(\bigcup_{t \in T'} V_t\).
Theorem (Node Separation Property)

Suppose $T - t$ has components T_1, \ldots, T_d. Then, the subgraphs

$$G_{T_1} - V_t, G_{T_2} - V_t, \ldots, G_{T_d} - V_t$$

have no nodes in common, and there are no edges between them.
Theorem (Edge Separation Property)

Let X and Y be the two components of T after the deletion of edge (x, y). Then, deleting $V_x \cap V_y$ disconnects G into two subgraphs $H_X = G_X - (V_x \cap V_y)$ and $H_Y = G_Y - (V_x \cap V_y)$. That is,

- H_X and H_Y share no nodes and
- there is no edge in G with one endpoint in H_X and the other in H_Y.

\[V_x \cap V_y \]
Definition

A tree decomposition \((T, \{V_t : t \in T\})\) of \(G\) is nonredundant if there is no edge \((x, y)\) in \(T\) such that \(V_x \subseteq V_y\).

Lemma

Any graph has a nonredundant tree decomposition.

Lemma

Any non-redundant tree decomposition of an \(n\)-node graph has at most \(n\) pieces.
Rooted tree decomposition

Definition

A rooted tree decomposition of G is a tree decomposition $(T, \{V_t : t \in T\})$ of G where some node r in T is declared to be the root.

Let t be a node in a rooted tree decomposition. Then,

- T_t is the subtree of T rooted at t,
- G_t is the subgraph of G induced by the vertices in $\bigcup_{x \in T_t} V_x$.

CS 511 (Iowa State University)
Tree Decompositions and Tree-Width
December 6, 2010 11 / 15
Subproblems

Definition

For each node t in a rooted tree decomposition of G and each independent set $U \subseteq V_t$, $\text{opt}_U(t)$ is the maximum weight of an independent set S of G_t such that $S \cap V_t = U$.
Optimal Substructure

Let

- t be a node in T with children t_1, \ldots, t_d,
- U be an independent set of V_t,
- S be a maximum independent set in G_t subject to $S \cap V_t = U$ (i.e., $w(S) = \text{opt}_U(t)$),
- S_i be the intersection of S with the nodes of G_{T_i}.

Lemma (Optimal Substructure)

S_i is a maximum-weight independent set of G_{T_i}, subject to the constraint that $S_i \cap V_t = U \cap V_{t_i}$.
Theorem (Dynamic Programming Recurrence Relation for MWIS)

$$\text{opt}_U(t) = w(U) + \sum_{i=1}^{d} \max \{ \text{opt}_{U_i}(t_i) - w(U_i \cap U) : U_i \subseteq V_{t_i} \text{ is independent and } U_i \cap V_t = U \cap V_{t_i} \}.$$
Theorem (Running time analysis)

Suppose we are given a vertex-weighted graph \(G \in \text{TW}(k) \) with \(n \) nodes along with a tree decomposition of width \(\leq k \) for \(G \). Then, we can find a maximum weight independent set in \(G \) in \(O(4^{k+1}kn) \) time.

Proof.

Traverse the tree decomposition bottom-up.

- For a leaf, use exhaustive enumeration \(\Rightarrow O(2^{k+1}) \) time.
- For an internal node \(t \), apply the recurrence relation.
 - Enumerate each of the \(O(2^{k+1}) \) subsets \(U \) of \(V_t \).
 - For each child \(t_i \) of \(t \), enumerate each of the \(O(2^{k+1}) \) subsets \(U_i \) of \(V_{t_i} \), checking that \(U_i \cap V_t = U \cap V_{t_i} \).

\[\Rightarrow \quad \text{Time} = O\left(\frac{2^{k+1}}{\# U's} \times \frac{d}{\# \text{children}} \times \frac{2^{k+1}}{\# U_i's} \times \frac{k}{\text{checking } U_i} \right) = O(4^{k+1}kd). \]

- Total time \(= O(4^{k+1} k \sum_{t \in T} \text{degree}(t)) = O(4^{k+1} kn) \).