This closed-book, closed-notes two-hour test consists of 6 questions. The number of points for each problem is indicated on the next page.

- Read all questions carefully before starting.
- Work on the problems that seem easiest first.
- Attempt to solve all problems.
- Show your work, but also remember that we prefer concise answers.
- Write all your answers clearly on the space provided in the exam paper. If you need additional paper, please ask us.
- If you do not understand a problem, please ask us for clarification.
- Clearly state any simplifying assumptions you make in solving a problem.
- When asked to describe algorithm, you are expected to argue its correctness and analyze its running time.

Name: __

1
Score

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>100</td>
</tr>
</tbody>
</table>
1 NP-Completeness (16 points)

As we saw in class, the following problem is NP-complete.

HAMILTONIAN CYCLE

Input: Undirected graph \(G = (V, E) \).

Question: Does \(G \) have a cycle that visits each vertex exactly once?

Consider **HAMILTONIAN CYCLE** restricted to graphs in which every vertex has degree at most 2. Call this problem **HAMILTONIAN CYCLE-2**.

(a) (4 points) Prove that **HAMILTONIAN CYCLE-2** is in NP.
(b) (6 points) What is wrong with the following proof of NP-completeness for HAMILTONIAN CYCLE-2?

We know that the HAMILTONIAN CYCLE problem in general graphs is NP-complete, so it is enough to present a reduction from HAMILTONIAN CYCLE-2 to HAMILTONIAN CYCLE. Given a graph G with vertices of degree at most 2, the reduction leaves the graph unchanged: clearly the output of the reduction is a possible input for the HAMILTONIAN CYCLE problem. Furthermore, the answer to both problems is identical. This proves the correctness of the reduction and, therefore, the NP-completeness of HAMILTONIAN CYCLE-2.
(c) (6 points) Show that HAMILTONIAN CYCLE-2 can be solved in polynomial time.
2 Decision, Search, and Optimization (16 points)

As you recall, the subset sum problem is defined as follows.

SUBSET SUM

Input: A set of integers \(S = \{w_1, w_2, \ldots, w_n\} \) and an integer \(W \).

Question: Does there exist a subset of \(S \) that adds up to exactly \(W \)?

(a) (8 points) Suppose you have a procedure solves that solves SUBSET SUM in polynomial time. That is, this procedure takes an instance \(\langle S, W \rangle \) of SUBSET SUM and returns “yes” if there is a subset of \(S \) that adds up to \(W \), and returns “no” otherwise. Show that you can use this procedure to develop a polynomial-time algorithm that returns a subset of \(S \) that adds up to \(W \), if such a subset exists, or reports that no such subset exists otherwise.
(b) (8 points) Consider the following optimization version of SUBSET SUM:

Max Subset Sum

Input: A set of positive integers $S = \{w_1, w_2, \ldots, w_n\}$ and a positive integer W.

Goal: Find a subset of S whose sum is as large as possible, without exceeding W.

Show that Max Subset Sum is solvable in polynomial time if and only if Subset Sum is.
3 Proving NP-Completeness by Generalization (18 points)

For each of the problems below, prove that it is NP-complete by (i) arguing why it is in NP and (ii) stating which NP-complete problem it generalizes and how.

(a) (6 points) MIN UNSAT: Given a CNF formula φ and an integer $g \geq 0$, determine whether there exists a truth assignment where at most g clauses of φ are not satisfied.
(b) (6 points) **SPARSE SUBGRAPH**: Given a graph G and two integers $a \geq 0$ and $b \geq 0$, determine if there is a subset of at least a vertices of G such that there are at most b edges between them.
(c) (6 points) SUBGRAPH ISOMORPHISM: Given as input two undirected graphs G and H, determine whether G is a subgraph of H (that is, whether by deleting certain vertices and edges of H we obtain a graph that is, up to renaming of vertices, identical to G).
4 Degree-Constrained Spanning Trees (16 points)

A spanning tree of a connected, undirected graph \(G = (V, E) \) is a tree \(T \) whose vertex set is \(V \) and whose edge set is a subset of \(E \) (note that, by definition, \(T \) must be connected). Now consider the following problem.

\[k \text{-SPANNING TREE} \]

Input: An undirected graph \(G = (V, E) \).

Output: A spanning tree of \(G \) in which each node has degree at most \(k \), if such a tree exists.

Note that we place no restriction on the degrees of the nodes in \(G \).

(a) (4 points) Show that, for \(k \geq 2 \), \(k \text{-SPANNING TREE} \) is in NP.
(b) (12 points) Show that, for $k \geq 2$, k-SPANNING TREE is NP-complete. (*Hint:* What happens when $k = 2$?)
5 The Knapsack Problem (16 points)

Consider the following problem.

KNAPSACK

Input: A collection of \(n \) items, where item \(i \) has an integer weight \(w_i \) and an integer value \(v_i \), along with two integers, \(W \) and \(V \).

Question: Does there exist a subset of the items whose total weight is at most \(W \) and whose total value is at least \(V \)?

(a) (4 points) Prove that KNAPSACK \(\in \) NP.
(b) (12 points) Show that KNAPSACK is NP-complete. (*Hint:* Use reduction from SUBSET SUM.)
6 Partitioning into Communities (18 points)

An interaction matrix for a set P of n people is a zero-one matrix $C = [c_{ij}]$, where

$$c_{ij} = \begin{cases}
1 & \text{if person } i \text{ is known to interact with person } j \text{ on a social basis,} \\
0 & \text{otherwise.}
\end{cases}$$

Note that C is symmetric; i.e., $c_{ij} = c_{ji}$. Assume that $c_{ii} = 1$ for $i = 1, \ldots, n$.

Let us define a community to be a subset A of P such that every two people in A interact. Consider the following problem

PARTITIONING INTO COMMUNITIES

Input: An interaction matrix C for a set P of n people and an integer K.

Question: Can P be partitioned into at most K disjoint communities?

(a) (4 points) Show that PARTITIONING INTO COMMUNITIES is in NP.
(b) (14 points) Show that PARTITIONING INTO COMMUNITIES is NP-complete. (Hint: Consider the case where $K = 3$.)