COM S 461: ASSIGNMENT II

Date Assigned: September 24, 2004
Due: October 8, 2004 by 2:00 pm
Percentage in your final grade: 6%
Maximum score for this assignment: 60 points

Objectives:

1. To test your understanding of functional dependencies and normalization.

Questions

1. (20 points): Suppose that we have the following three tuples in a legal instance of a relation schema S with three attributes ABC (listed in order): (1,2,3), (4,2,3), and (5,3,3).
 - Which of the following dependencies can you infer does not hold over schema S?
 - $A \rightarrow B$, $BC \rightarrow A$, $B \rightarrow C$
 - Can you identify any dependencies that hold over S?

 Answers:
 - $BC \rightarrow A$ due to tuples (1,2,3) and (4,2,3)
 - No.

2. (20 points): Consider the attribute set $R=ABCDEG$ with the set of dependencies $F = \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$.
 - Is $D_1 = \{ABC, ACDE, ADG\}$ a lossless join decomposition?
 - Is D_1 a dependency-preserving decomposition?
 - What is the strongest normal form of ABC and why?

 Answers:
 Let $R_1 = ABC$, $R_2 = ACDE$, and $R_3 = ADG$.
 (a) D_1 is a lossless join decomposition. The common attributes of R_1 and R_2 is AC, and AC is a key of R_1. The common attributes of R_2 and R_3 is AD, and AD is a key of R_3.
 (b) D_1 is not a dependency-preserving decomposition.
 It is obvious that $AB \rightarrow C$, $AC \rightarrow B$, and $BC \rightarrow A$ are preserved in R_1. $AD \rightarrow E$ is preserved in R_2.
 We need to check whether $B \rightarrow D$ and $E \rightarrow G$ are preserved or not.
 - Compute attribute closure sets of every left-hand side of each functional dependency (FD) in F.
 - $\{AB\}^+$ (with respect to F) = $\{A, B, C, D, E, G\}$
 - $\{AC\}^+$ (with respect to F) = $\{A, C, B, D, E, G\}$
 - $\{AD\}^+$ (with respect to F) = $\{A, D, E, G\}$
 - $\{B\}^+$ (with respect to F) = $\{B, D\}$
 - $\{BC\}^+$ (with respect to F) = $\{B, C, A, D, E, G\}$
 - $\{E\}^+$ (with respect to F) = $\{E, G\}$
 - Based on these attribute closure sets, important FDs in the projection of each relation of the decomposition D_1 are known.
 - $F_{R_1} = \{X \rightarrow Y | X \cup Y \subseteq R_1\}$.
 - $\{AB \rightarrow C, AC \rightarrow B, BC \rightarrow A\} \subset F_{R_1}$.
 - $F_{R_2} = \{X \rightarrow Y | X \cup Y \subseteq R_2\}$.
3. (20 points): Consider the universal relation $R = \{A, B, C, D, E, F, G, H, I, J\}$ and the set of functional dependencies $F = \{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ\}$.

Given the following decomposition.

$D_2 = \{R_1, R_2, R_3, R_4, R_5\}$

$R_1 = \{A, B, C, D\}$

$R_2 = \{D, E\}$

$R_3 = \{B, F\}$

$R_4 = \{F, G, H\}$

$R_5 = \{D, I, J\}$

- Is D_2 a dependency-preserving decomposition? Why?
- Is D_2 a lossless-join decomposition? Explain your answer using the matrix algorithm discussed in the class (i.e., the slide titled "Testing for the lossless join property").

Answers:

(a) D_2 is not a dependency-preserving decomposition.

$AB \rightarrow C$ and $A \rightarrow D$ are preserved in R_1. $B \rightarrow F$ is preserved in R_3. $F \rightarrow GH$ is preserved in R_4. $D \rightarrow IJ$ is preserved in R_5. $A \rightarrow E$ is not preserved in any of the relations in the decomposition.

(b) D_2 is not a lossless-join decomposition.

Step 3:

$$
\begin{array}{cccccccccc}
 & A & B & C & D & E & F & G & H & I & J \\
R_1 & a_0 & a_1 & a_2 & a_3 & b_{04} & b_{05} & b_{06} & b_{07} & b_{08} & b_{09} \\
R_2 & b_{10} & b_{11} & b_{12} & a_3 & b_{15} & b_{16} & b_{17} & b_{18} & b_{19} \\
R_3 & b_{20} & a_1 & b_{22} & b_{23} & b_{24} & a_5 & b_{26} & b_{27} & b_{28} & b_{29} \\
R_4 & b_{30} & b_{31} & b_{32} & b_{33} & b_{34} & a_5 & a_6 & a_7 & b_{38} & b_{39} \\
R_5 & b_{40} & b_{41} & b_{42} & a_3 & b_{44} & b_{45} & b_{46} & b_{47} & a_{8} & a_{9} \\
\end{array}
$$

Step 4: Consider each FD in F.

- For $AB \rightarrow C$, nothing to be done to the matrix.
- For $A \rightarrow DE$, nothing to be done to the matrix.
- For $B \rightarrow F$, change b_{05} to a_5 since a_1 of R_1 matches a_1 of R_3.
- For $F \rightarrow GH$, change b_{26} to a_6, b_{27} to a_7 and b_{06} to a_6 and b_{07} to a_7 since R_1, R_3, R_4 have the same a_5.
- For $D \rightarrow IJ$, change b_{08} to a_8, b_{09} to a_9 and b_{18} to a_8 and b_{19} to a_9 since R_1, R_2, R_5 have the same a_3.

The final matrix is

$$
\begin{array}{cccccccccc}
 & A & B & C & D & E & F & G & H & I & J \\
R_1 & a_0 & a_1 & a_2 & a_3 & b_{04} & b_{05} & a_5 & a_6 & a_7 & a_9 \\
R_2 & b_{10} & b_{11} & b_{12} & a_3 & b_{15} & b_{16} & b_{17} & a_8 & a_9 \\
R_3 & b_{20} & a_1 & b_{22} & b_{23} & b_{24} & a_5 & a_6 & a_7 & b_{28} & b_{29} \\
R_4 & b_{30} & b_{31} & b_{32} & b_{33} & b_{34} & a_5 & a_6 & a_7 & b_{38} & b_{39} \\
R_5 & b_{40} & b_{41} & b_{42} & a_3 & b_{44} & b_{45} & b_{46} & b_{47} & a_{8} & a_{9} \\
\end{array}
$$
Step 5: Since no rows contain all “a”s, the decomposition is not a lossless-join decomposition.

Submission Requirements:
Put your answers in a Word document. Submit your word document using the turnin script with “hw2” as the last argument for the script.