Rearrangement of Analytical C to an O(N²) formula

To transform your analytical generation of C from an O(N^3) to an O(N^2) operation you need to know some summation identities and to modify them appropriately.

So to do this lets start from the beginning. We are multiplying a matrix A by B to generate C. Let’s assume that:

\[A(M, N) \times B(N, L) = C(M, L) \] (1)

We have chosen an arbitrary analytical definition of A and B:

\[A(i, j) = a \times i + b \times j + c \] (2)

\[B(i, j) = d \times i + e \times j + f \] (3)

where \(i, j \) are the row and column indecies, respectively and \(a, b, c, d, e, f \) are arbitrary compile time constants. The range of \(i \) or \(j \) is from zero to the rank minus one in that dimension of the matrix.

Based on the definition of matrix multiplication we know that each element of C is computed by the formula:

\[C_{i,j} = \sum_{k=0}^{N-1} A_{i,k} \times B_{k,j} \] (4)

By substituting the definitions of A (Equation 2) and B (Equation 3) into Equation 4 we get:

\[C_{i,j} = \sum_{k=0}^{N-1} (a \times i + b \times k + c) \times (d \times k + e \times j + f) \] (5)

Now by expanding all terms in Equation 5 and collecting those terms with respect to those that multiply powers of k we get:

\[C_{i,j} = \sum_{k=0}^{N-1} bdk^2 + \sum_{k=0}^{N-1} [d(ai + c) + b(ej + f)]k + \sum_{k=0}^{N-1} [(ai + c)(ej + f)] \] (6)

We want to identify each of the summations as individual terms so we redefine Equation 6 as three summation terms

\[C_{i,j} = T_{i,j}^1 + T_{i,j}^2 + T_{i,j}^3 \] (7)

where each term is:

\[T_{i,j}^1 = \sum_{k=0}^{N-1} bdk^2 \] (8)
\[T_{i,j}^2 = \sum_{k=0}^{N-1} [d(ai + c) + b(ej + f)]k \] \hspace{1cm} (9)

\[T_{i,j}^3 = \sum_{k=0}^{N-1} [(ai + c)(ej + f)] \] \hspace{1cm} (10)

Now we know from various mathematical tables that the three identity sums we need are:

\[\sum_{k=1}^{n} 1 = n \] \hspace{1cm} (11)

\[\sum_{k=1}^{n} i = \frac{n(n + 1)}{2} \] \hspace{1cm} (12)

\[\sum_{k=1}^{n} i^2 = \frac{n(2n + 1)(n + 1)}{6} \] \hspace{1cm} (13)

Note that the range of the sum in each Equation is from 1 to \(n \) for these formulas. Let’s look at each term in Equation 6. The first term Equation 8 has a multiplicative constant \(bd \) that can be pulled out of the summation to give:

\[T_{i,j}^1 = \sum_{k=0}^{N-1} bd k^2 = (bd) \sum_{k=0}^{N-1} k^2 \] \hspace{1cm} (14)

Now if we let \(n = N - 1 \) in Equation 13 and we notice that \(i^2 = 0 \) when \(i = 0 \) we get:

\[\sum_{k=0}^{N-1} k^2 = \frac{N(2N - 1)(N - 1)}{6} \] \hspace{1cm} (15)

Using this result in Equation 14 we get:

\[T_{i,j}^1 = bd \frac{N(2N - 1)(N - 1)}{6} \] \hspace{1cm} (16)

Note that there is no formal dependence on \(i \) or \(j \) in this Equation!

The second term, Equation 9, has a multiplicative constant that can be pulled out of the summation as well to give:

\[T_{i,j}^2 = \sum_{k=0}^{N-1} [d(ai + c) + b(ej + f)]k = [d(ai + c) + b(ej + f)] \sum_{k=0}^{N-1} k \] \hspace{1cm} (17)

Now if we let \(n = N - 1 \) in Equation 12 and we notice that when \(i = 0 \) we have no additional contribution we get:

\[\sum_{k=0}^{N-1} i = \frac{N(N - 1)}{2} \] \hspace{1cm} (18)
Using this result in Equation 17 we get:

\[
T_{i,j}^2 = [d(ai + c) + b(ej + f)] \frac{N(N - 1)}{2}
\]

(19)

The third term, Equation 10 only has a multiplicative constant and no \(k \) dependence in the summation. This gives:

\[
T_{i,j}^3 = [(ai + c)(ej + f)] \sum_{k=0}^{N-1} 1
\]

(20)

Now close examination of Equation 11 shows that the summation turns into a multiplier that is determined by the range of the starting and ending values of the summation. Based on this you can show that:

\[
\sum_{k=1}^{n} 1 = \sum_{k=0}^{n-1} 1 = n
\]

(21)

or more generally:

\[
\sum_{k=startvalue}^{endvalue} 1 = endvalue - startvalue + 1
\]

(22)

Using this result in Equation 20 we get:

\[
T_{i,j}^3 = [(ai + c)(ej + f)]N
\]

(23)

Now substituting Equations 16, 19, and 23 into Equation 7 we get:

\[
C_{i,j} = bd \left[\frac{N(2N - 1)(N - 1)}{6} \right] \\
+ [d(ai + c) + b(ej + f)] \left[\frac{N(N - 1)}{2} \right] \\
+ [(ai + c)(ej + f)]N
\]

(24)

Which has no \(k \) dependence at all since all \(k \) dependences have been “summed” out of the equation. Using Equation 24 for each element of \(C \) you can develop an \(\mathcal{O}(N^2) \) function for the analytical generation of the \(C \) matrix.