Matrix Multiplication

The algorithm for this course is simply matrix multiplication. This is a scalable algorithm and can be used to measure the viability of any parallel programming paradigm. If you cannot make matrix multiplication scale in a parallel programming paradigm then said paradigm may not be viable.

For two matrices \(A \) and \(B \) to be multiplied together they must have the following characteristics. The number of columns in matrix \(A \) must be identical to the number of rows in matrix \(B \). The resultant product of those to matrices, \(C \), will have the same number of rows that matrix \(A \) has and the same number of columns as matrix \(B \). Therefore,

\[
\begin{align*}
\text{number of columns}_A &= \text{number of rows}_B \\
\text{number of rows}_A &= \text{number of rows}_C \\
\text{number of columns}_B &= \text{number of columns}_C
\end{align*}
\]

The simple representation of any given row of matrix \(A \) multiplied by any given column of matrix \(B \) gives the resultant element of matrix \(C \). Mathematically this becomes:

\[
C_{i,j} = \sum_{k=K_{\text{start}}}^{K_{\text{limit}}} A_{i,k} \times B_{k,j}
\]

Where \(k \) is the summation index over the length of the row in \(A \) or the length of the column of \(B \). \(K_{\text{start}} \) is 0 (zero) for a C program and 1 for FORTRAN. \(K_{\text{limit}} \) is the lexical index representing the length of the row in \(A \) (for a C program it is \(\text{number of columns}_A - 1 \), for FORTRAN it is \(\text{number of columns}_A \)). \(K_{\text{limit}} \) is also the lexical index representing length of the column in \(B \) (for a C program it is \(\text{number of rows}_B - 1 \), for FORTRAN it is \(\text{number of rows}_B \)).

This should make sense because the “width” of \(A \) must equal the “height” of \(B \), in order to multiply the two matrices.

Again Equation 4 is for each element of the \(C \) product or result matrix. How many elements does \(C_{i,j} \) have? It has \(\text{number of rows}_C \times \text{number of columns}_C \). From Equations 2 and 3 this is equivalent to: \(\text{number of rows}_A \times \text{number of columns}_B \)

This leads us directly to the simple loop or dot product (“\(\text{ddot} \)” form of matrix multiplication:

```cpp
for (i=0; i<\text{number of rows}_C; i++) {
    for (j=0; j<\text{number of columns}_C; j++) {
        for (k=0; k<\text{number of columns}_A; k++) {
            C[i][j] += A[i][k] \times B[k][j];
        }
    }
}
```
