
Using Edge-Valued Decision Diagrams for

Symbolic Generation of Shortest Paths⋆

Gianfranco Ciardo Radu Siminiceanu

College of William and Mary,
Williamsburg, Virginia 23187
{ciardo,radu}@cs.wm.edu

Abstract. We present a new method for the symbolic construction of
shortest paths in reachability graphs. Our algorithm relies on a variant
of edge–valued decision diagrams that supports efficient fixed–point it-
erations for the joint computation of both the reachable states and their
distance from the initial states. Once the distance function is known,
a shortest path from an initial state to a state satisfying a given con-
dition can be easily obtained. Using a few representative examples, we
show how our algorithm is vastly superior, in terms of both memory and
space, to alternative approaches that compute the same information,
such as ordinary or algebraic decision diagrams.

1 Introduction

Model checking [13] is an exhaustive, fully automated approach to formal ver-
ification. Its ability to provide counterexamples or witnesses for the properties
that are checked makes it increasingly popular. In many cases, however, this
feature is the most time– and space–consuming stage of the entire verification
process. For example, [15] shows how to construct traces for queries expressed
in the temporal logic CTL [11] under fairness constraints. Another direction is
taken in SAT–based model checking, where satisfiabilty checkers are used to find
shortest–length counterexamples (as is the case of the bounded model checking
technique [4]), conduct the entire reachability analysis [1], or combine the state–
space exploration method with SAT solvers [24].

Since a trace is usually meant to be examined by a human, it is particularly
desirable for a model–checking tool to compute a minimal–length trace. Unfor-
tunately, finding such trace is an NP-complete problem [17], thus a sub–optimal
trace is sought in most cases. For some operators, finding minimal–length wit-
nesses is instead easy in principle. An example is the EF operator, which is
closely related to the (backward) reachability relation: a state satisfies EFp if
there is an execution path from it to a state where property p holds. Even using
symbolic encodings [7], though, the generation and storage of the sets of states
required to generate an EF witness can be a major limitation in practice.

⋆ Work supported in part by the National Aeronautics and Space Administration under NASA
Grants NAG-1-2168 and NAG-1-02095.

Our goal is then to adapt a very fast and memory–efficient state–space gen-
eration algorithm we recently developed [10] and endow the symbolic data struc-
ture with information that captures the minimum distance of each state from any
of the initial states. Knowledge of this distance significantly simplifies the gen-
eration of shortest–length EF witnesses. To encode this information, we employ
a variant of the edge–valued decision diagrams [21], appropriately generalized so
that it is applicable to our fast state–space generation strategy. We show that
the new variant we define is still canonical, and emphasize the importance of
using edge–values, which give us increased flexibility when performing guided
fixed–point iterations.

The paper is organized as follows. Section 2 defines basic concepts in discrete–
state systems, ordinary and edge–valued decision diagrams, state–space genera-
tion, and traces, and formulates the one–to–many shortest path problem. Section
3 introduces our extensions to edge–valued decision diagrams, including a differ-
ent type of canonical form, EV+MDDs. Section 4 discusses the efficient manip-
ulation of EV+MDDs and our algorithm for constructing the distance function.
Section 5 evaluates the performance of the new data structure and algorithm
by comparing them with existing technologies: regular and algebraic decision
diagrams. Section 6 concludes with final remarks and future research directions.

2 State spaces, decision diagrams, and distances

A discrete–state model is a triple (Ŝ,Xinit,N), where the discrete set Ŝ is the

potential state space of the model; the set Xinit ⊆ Ŝ contains the initial states ;

and N : Ŝ → 2Ŝ is the transition function specifying which states can be reached
from a given state in one step, which we extend to sets: N (X) =

⋃
i∈X N (i). We

consider structured systems modeled as a collection of K submodels. A (global)
system state i is then a K-tuple (iK , . . . , i1), where ik is the local state for

submodel k, for K≥k≥1, and Ŝ is given by SK × · · · ×S1, the cross–product of
K local state spaces Sk, which we identify with {0, . . . , nk−1} since we assume

that Ŝ is finite. The (reachable) state space S ⊆ Ŝ is the smallest set containing
Xinit and closed with respect to N , i.e.:

S = Xinit ∪ N (Xinit) ∪ N (N (Xinit) ∪ · · · = N ∗(Xinit).

Thus, S is the fixed point of equation S = N (S) when S is initialized to Xinit.

2.1 Decision diagrams

It is well known that the state spaces of realistic models are enormous, and
that decision diagrams are an effective way to cope with this state–space ex-
plosion problem. Their boolean incarnation, binary decision diagrams (BDDs)
[5], can compactly encode boolean functions of K variables, hence subsets of
{0, 1}K , which can then be manipulated very efficiently. BDDs have been suc-
cessfully employed to verify digital circuits and other types of synchronous and

asynchronous systems. In the last decade, their application has expanded to ar-
eas of computer science beyond computer–aided verification. A comprehensive
overview of decision diagrams is presented in [14].

We consider exclusively ordered decision diagrams (the variables labelling
nodes along any path from the root must follow the order iK , . . . , i1) that are
either reduced (no duplicate nodes and no node with all edges pointing to the
same node, but edges possibly spanning multiple levels) or quasi–reduced (no
duplicate nodes, and all edges spanning exactly one level), either form being
canonical. We adopt the extension of BDDs to integer variables, i.e., multi–
valued decision diagrams (MDDs) [19], an example of which is in Figure 1.
MDDs are often more naturally suited than BDDs to represent the state space
of arbitrary discrete systems, since no binary encoding must be used to represent
the local states for level k when nk > 2. An even more important reason to use
MDDs in our work, as it will be apparent, is that they better allow us to exploit
the event locality present in systems exhibiting a globally–asynchronous locally–
synchronous behavior. When combined with the Kronecker representation of
the transition relation inspired by [2] and applied in [9, 22], MDDs accommo-
date different fixed–point iteration strategies that result in remarkable efficiency
improvements [10].

To discuss locality in a structured model, we require a disjunctively–partitioned
transition function [18], i.e., N must be a union of (asynchronous) transition
functions: N (iK , . . . , i1) =

⋃
e∈E Ne(iK , . . . , i1), where E is a finite set of events

and Ne is the transition function associated with event e. Furthermore, we must
be able to express each transition function Ne as the cross–product of K local
transition functions: Ne(iK , . . . , i1) = Ne,K(iK) × · · · × Ne,1(i1). This is a sur-
prisingly natural requirement: for example, it is satisfied by any Petri net [23],
regardless of how it is decomposed into K subnets (by partitioning its places into
K sets). Moreover, if a given model does not exhibit this behavior, we can always
coarsen K or refine E so that it does. If we identify Ne,k with a boolean matrix
of size nk × nk, where entry (ik, jk) is 1 iff jk ∈ Ne,k(ik), the overall transition
relation is encoded by the boolean Kronecker expression

∑
e∈E

⊗
K≥k≥1 Ne,k.

We say that event e affects level k if Ne,k is not the identity, we denote the top
and bottom levels affected by e with Top(e) and Bot(e), respectively, and we let
Ek = {e ∈ E : Top(e) = k}.

2.2 Symbolic state–space generation: breadth–first vs. saturation

The traditional approach to generating the reachable states of a system is based
on a breadth–first traversal, as derived from classical fixed–point theory, and
applies a monolithic N (even when encoded as

⋃
e∈E Ne): after d iterations, the

currently–known state space contains exactly all states whose distance from any
state in Xinit is at most d. However, recent advances have shown that non–BFS,
guided, or chaotic [16], exploration can result in a better iteration strategy.

An example is the saturation algorithm introduced in [10], which exhaustively
fires (explores) all events of Ek in an MDD node at level k, thereby bringing it to
its final “saturated” form. We only briefly summarize the main characteristics of

S4 = {0, 1, 2, 3}

S3 = {0, 1, 2}

S2 = {0, 1}

S1 = {0, 1, 2}

0 1 2 3

0 1 2 0 1 2

0 1 0 1 0 1

0 1 20 1 2 0 1 2

0 1 2

0 1

10

S = {0210, 1000, 1010,
1100, 1110, 1210,
2000, 2010, 2100,
2110, 2210, 3010,
3110, 3200, 3201,
3202, 3210, 3211,
3212}

Fig. 1. A 4-level MDD on {0,1,2,3}×{0,1,2}×{0,1}×{0,1,2} and the encoded set S.

saturation in this section, since the algorithm we present in Section 4.1 follows
the same idea, except it is applied to a richer data structure.

Saturation considers the nodes in a bottom–up fashion, i.e., when a node
is processed, all its descendants are already known to be saturated. There are
major advantages in working with saturated nodes. A saturated node at level k
encodes a fixed point with respect to events in Ek ∪ . . . ∪ E1, thus it need not
be visited again when considering such events. By contrast, traditional symbolic
algorithms manipulate and store a large number of non–saturated nodes; these
nodes cannot be present in the encoding of the final state space, thus will nec-
essarily be deleted before reaching the fixed–point and replaced by (saturated)
nodes encoding a larger subspace. Similar advantages apply to the manipulation
of the auxiliary data structures used in any symbolic state–space generation
algorithm, the unique table and the operation cache: only saturated nodes are
inserted in them, resulting in substantial memory savings. Exploring a node
exhaustively once, instead of once per iteration, also facilitates the idea of in–
place–updates : while traditional algorithms frequently create updated versions
of a node, to avoid using stale unique table and cache entries, saturation only
checks–in a node when all possible updates on it have been performed.

Experimental studies [10] show that our saturation strategy performs orders
of magnitude faster than previous algorithms. Even more important, its peak
memory requirements are often very close to the final requirements, unlike tra-
ditional approaches where the memory consumption grows rapidly until midway
through the exploration, only to drop sharply in the last phases. Our next chal-
lenge for saturation is then applying it to other types of symbolic computation,
such as the one discussed in this paper: the generation of shortest–length traces,
where the use of chaotic iteration strategies would not seem applicable at first.

2.3 The distance function

The distance of a reachable state i ∈ S from the set of initial states Xinit is
defined as δ(i) = min

{
d : i ∈ N d(Xinit)

}
. We can naturally extend δ : S → N

to all states in Ŝ by letting δ(i) = ∞ for any non–reachable state i ∈ Ŝ \ S.

Alternatively, given such a function δ : Ŝ → N ∪ {∞}, we can identify S as the

subset of the domain where the function is finite: S = {i ∈ Ŝ : δ(i) < ∞}.

The formulation of our problem is then: Given a description of a struc-
tured discrete–state system (Ŝ,Xinit,N), determine the distance to all reachable

states, i.e., compute and store δ : Ŝ → N ∪ {∞} (note that the reachable state
space S is not an input, rather, it is implicitly an output). This can be viewed
as a least fixed–point computation for the functional Φ : D → D, where D is the
set of functions mapping Ŝ onto N∪ {∞}. In other words, Φ refines an approxi-
mation of the distance function from the initial δ[0] ∈ D, defined as δ[0](i) = 0,
if s ∈ Xinit, δ

[0](i) = ∞ otherwise, via the iteration

δ[m+1](i) = Φ(δ[m])(i) = min
(
δ[m](i),min

{
1 + δ[m](i′)

∣∣∣ i ∈ N (i′)
})

.

Note that the state–space construction is itself a fixed–point computation,
so we seek now to efficiently combine the two fixed–point operations into one.
Before showing our algorithm to accomplish this, in Section 3, we first describe
a few approaches to compute distance information based on existing decision
diagrams technology.

2.4 Explicit encoding of state distances

Algebraic decision diagrams (ADDs) [3] are an extension of BDDs where multiple
terminals are allowed (thus, they are also called MTBDDs [12]). ADDs can

encode arithmetic functions from Ŝ to R ∪ {∞}. The value of the function on a
specific input (representing a state in our case) is the value of the terminal node
reached by following the path encoding the input. While ADDs are traditionally
associated to boolean argument variables, extending the arguments to finite
integer sets is straightforward.

The compactness of the ADD representation is related to the merging of
nodes, exploited to a certain degree in all decision diagrams. In this case, there is
a unique root, but having many terminal values can greatly reduce the degree of
node merging, especially at the lower levels, with respect to the support decision
diagram, i.e., the MDD that encodes S ⊆ Ŝ. In other words, the number of
terminal nodes for the ADD that encodes δ : Ŝ → N ∪ {∞} equals the number
of distinct values for δ (hence the “explicit” in the title of this section); if we
merged all finite–valued terminals into one, thus encoding just S but not the
state distances, many ADD nodes may be merged into one MDD node.

An alternative explicit encoding of state distances can be achieved by simply
using a forest of MDDs. This approach is derived from the traditional ROBDD
method, by extending it to multi–valued variables. Each of the distance sets
N d(Xinit) = {i ∈ S | δ(i) = d} (or {i ∈ S | δ(i) ≤ d}, which may require fewer
nodes in some cases) can be encoded using a separate MDD. Informally, this
reverses the region where most sharing of nodes occurs compared to ADDs: the
roots are distinct, but they may be likely to share nodes downstream.

The cardinality of the range of the function is critical to the compactness
of either representation: the wider the range, the less likely it is that nodes are
merged. Figure 2 (a) and (b) show an example of the same distance function
represented as an ADD or as a forest of MDDs, respectively.

i3 0 0 0 0 1 1 1 1

i2 0 0 1 1 0 0 1 1

i1 0 1 0 1 0 1 0 1

f 0 2 3 2 2 4 1 0 T0 421 3

(a) (b) dist=1dist=0 dist=2 dist=3 dist=4

Fig. 2. Storing the distance function: an ADD (a) vs. a forest of MDDs (b).

2.5 Symbolic encoding of state distances

The idea of associating numerical values to the edges of regular BDDs was pro-
posed in [20, 21], resulting in a new type of decision diagrams, edge–valued BDDs
(EVBDDs)1. In the following definition of EVBDDs, instead of using the original
terminology and notation, we use the terminology and notation needed to intro-
duce the new data structure presented in the next section, so that differences
and similarities will be more apparent.

Definition 1. An EVBDD is a directed acyclic graph that encodes a total func-
tion f : {0, 1}K → Z as follows:

1. There is a single terminal node, at level 0, with label 0, denoted by 〈0|0〉.
2. A non–terminal node at level k, K ≥ k≥ 1, is denoted by 〈k|p〉, where p is

a unique identifier within level k, and has two children, 〈k|p〉[0].child and
〈k|p〉[1].child (corresponding to the two possible values of ik) which are nodes
at some (not necessarily the same) level l, k>l≥0.

3. The 1-edge is labelled with an integer value 〈k|p〉[1].val ∈ Z, while the label
of 〈k|p〉[0].val is always (implicitly) 0.

4. There is a single root node 〈kr|r〉, for some K ≥ kr ≥ 0, with no incoming
edges, except for a “dangling” edge labelled with an integer value ρ ∈ Z.

5. Canonicity restrictions analogous to those of reduced ordered BDDs apply:
uniqueness : if 〈k|p〉[0].child = 〈k|q〉[0].child, 〈k|p〉[1].child = 〈k|q〉[1].child,

and 〈k|p〉[1].val = 〈k|q〉[1].val, then p = q;
reducedness : there is no redundant node 〈k|p〉 satisfying 〈k|p〉[0].child =

〈k|p〉[1].child and 〈k|p〉[1].val = 0.

The function encoded by an EVBDD node 〈k|p〉 is recursively defined by

f〈k|p〉(ik, . . . , i1) =

{
f〈k|p〉[0].child(il, . . . , i1) if ik = 0
f〈k|p〉[1].child(ir, . . . , i1) + 〈k|p〉[1].val if ik = 1

1 We observe that also binary moment diagrams (BMDs), independently introduced
in [6], associate values to edges. For BMDs however, evaluating the function on a
particular argument requires the traversal of multiple paths, as opposed to a unique
path for EVBDDs. Thus, while very effective for verifying circuits such as a multi-
plier, BMDs are not as suited for our approach.

i3 0 0 0 0 1 1 1 1

i2 0 0 1 1 0 0 1 1

i1 0 1 0 1 0 1 0 1

f 0 2 3 2 2 4 1 0

0 2

0 3 0 -1

0 2 0 -1

1 1

0 1 2 -1

-1 1 1 0

(a) (b)

2 3

2 2 3 -1

-1 1 2 1

(c)0 0 -3

0 0 0

Fig. 3. Canonical (a) and non–canonical (b),(c) EVBDDs for the same function f .

where l and r are the levels of 〈k|p〉[0].child and 〈k|p〉[1].child, respectively, and
f〈0|0〉 = 0. The function encoded by an EVBDD edge, that is, a (value,node) pair
is then simply obtained by adding the constant value to the function encoded by
the node. In particular, the function encoded by the EVBDD is f = ρ+ f〈kr|r〉.

Note that the nodes are normalized to enforce canonicity: the value of the
0-edge is always 0. If this requirement were relaxed, there would be an infinite
number of EVBDDs representing the same function, obtained by rearranging
the edge values. An example of multiple ways to encode the function of Figure 2
with non–canonical EVBDDs is shown in Figure 3, where, for better readability,
we show the edge value in the box from where the edge departs, except for the
top dangling arc. Only the EVBDD in Figure 3(a) is normalized. This node nor-
malization implies that ρ = f(0, . . . , 0) and may require the use of both negative
and positive edge values even when the encoded function is non–negative, as is
the case for Figure 3(a). More importantly, if we want to represent functions

such our distance δ : Ŝ → N∪ {∞}, we can allow edge values to be ∞; however,
if δ(0, . . . , 0) = ∞, i.e., state (0, . . . , 0) is not reachable, we cannot enforce the
required normalization, since this implies that ρ is ∞, and f is identically ∞ as
well. This prompted us to introduce a more general normalization rule, which
we present next.

3 A new approach

We use quasi–reduced, ordered, non–negative edge–valued, multi–valued deci-
sion diagrams. To the best of our knowledge, this is the first attempt to use
edge–valued decision diagrams of any type in fixed–point computations or in the
generation of traces.

3.1 Definition of EV+MDDs

We extend EVBDDs in several ways. The first extension is straightforward: from
binary to multi–valued variables. Then, we change the normalization of nodes
to a slightly more general one needed for our task. Finally, we allow the value of

i3 0 0 0 0 1 1 1 1

i2 0 0 1 1 0 0 1 1

i1 0 1 0 1 0 1 0 1

f 0 2 3 2 2 4 1 0

0 0

0 2 2 0

0 2 1 0

0

0

(a)

i1 0 0 0 0 1 1 1 1

i2 0 0 1 1 0 0 1 1

i3 0 1 0 1 0 1 0 1

f 0 2 3∞∞ 4 1 0

0 0

0 2 2 0

0 2 1 2 1 0

0

0

(b)

Fig. 4. Storing total (a) and partial (b) arithmetic functions with EV+MDDs.

an edge to be ∞, since this is required to describe our distance functions. Note
that the choice to use quasi–reduced instead of reduced decision diagrams is not
dictated by limitations in the descriptive power of EVBDDs, but by efficiency
considerations in the saturation–based algorithm we present in Section 4.

Definition 2. Given a function f : Ŝ → Z∪ {∞}, an EV+MDD for f 6= ∞ is a
directed acyclic graph with labelled edges that satisfies the following properties:

1. There is a single terminal node, at level 0, with label 0, denoted by 〈0|0〉.
2. A non–terminal node at level k, K ≥ k ≥ 1, is denoted by 〈k|p〉, where p

is a unique identifier within the level, and has nk ≥ 2 edges to children,
〈k|p〉[ik].child, labelled with values 〈k|p〉[ik].val ∈ N ∪ {∞}, for 0≤ ik<nk.

3. If 〈k|p〉[ik].val = ∞, the value of 〈k|p〉[ik].child is irrelevant, so we simply
require it to be 0 for canonicity; otherwise, 〈k|p〉[ik].child is the index of a
node at level k − 1.

4. There is a single root node, 〈K|r〉, with no incoming edges, except for a
“dangling” incoming edge labelled with an integer value ρ ∈ Z.

5. Each non–terminal node has at least one outgoing edge labelled
with 0.

6. All nodes are unique, i.e., if ∀ik, 0≤ ik <nk, 〈k|p〉[ik].child = 〈k|q〉[ik].child,
〈k|p〉[ik].val = 〈k|q〉[ik].val, then p = q.

Figure 4 shows two EV+MDDs storing a total and a partial2 function, respec-
tively (the total function encoded is that of Figures 2 and 3). Note that, unlike
the normalization for EVBDDs, our normalization requires that the labels on
(non–dangling) edges be non–negative, and at least one per node be zero, but
not in a pre–determined location; compare the EVBDD of Figure 3(a) with the
equivalent EV+MDD of Figure 4(a). The function encoded by the EV+MDD
node 〈k|p〉 is

f〈k|p〉(ik, . . . , i1) = 〈k|p〉[ik].val + f〈k−1|〈k|p〉[ik].child〉(ik−1, . . . , i1)

2 By “partial, we mean that some of its values can be ∞; whenever this is the case,
we omit the corresponding value and edge from the graphical representation.

and we let f〈0|0〉 = 0. As for EVBDDs, the function encoded by the EV+MDD
(ρ, 〈K|r〉) is f = ρ+ f〈K|r〉. However, now, ρ = min{f(i) : i ∈ Sk × · · · × S1}. In
our application, we will encode distances, which are non–negative, thus ρ = 0.
If we wanted to cope with the degenerate case Xinit = ∅, so that f is identically
∞, we could allow a special EV+MDD with ρ = ∞ and root 〈0|0〉.

3.2 Canonicity of EV+MDDs

Lemma 1. From every non–terminal EV+MDD node, there is an outgoing path
with all edges labelled 0 reaching 〈0|0〉.

Corollary 1. The function f〈k|p〉 encoded by a node 〈k|p〉 is non–negative and
min(f〈k|p〉) = 0.

Definition 3. The graphs rooted at two EV+MDD nodes 〈k|p〉 and 〈k|q〉 are
isomorphic if there is a bijection b from the nodes of the first graph to the nodes
of the second graph such that, for each node 〈l|s〉 of the first graph and each
il ∈ Sl (with k≥ l≥1):

b(〈l|s〉)[il].child = b(〈l|s〉[il].child) and b(〈l|s〉)[il].val = 〈l|s〉[il].val.

Theorem 1. (Canonicity) If two EV+MDDs (ρ1, 〈K|r1〉) and (ρ2, 〈K|r2〉) en-

code the same function f : Ŝ → N ∪ {∞}, then ρ1 = ρ2 and the two labelled
graphs rooted at 〈K|r1〉 and 〈K|r2〉 are isomorphic.

Proof. It is easy to see that, since the value on the dangling edges of the two
EV+MDDs equals the minimum value ρ the encoded function f can assume, we
must have ρ1 = ρ2 = ρ, and the two nodes 〈K|r1〉 and 〈K|r2〉 must encode the
same function f − ρ. We then need to prove by induction that, if two generic
EV+MDD nodes 〈k|p〉 and 〈k|q〉 encode the same function, the labelled graphs
rooted at them are isomorphic.
Basis (k = 1): if 〈1|p〉 and 〈1|q〉 encode the same function f : S1 → N ∪ {∞},
〈1|p〉[i1].child = 〈1|q〉[i1].child = 0 and 〈1|p〉[i1].val = 〈1|q〉[i1].val = f(i1) for
all i1 ∈ S1, thus the two labelled graphs rooted at 〈1|p〉 and 〈1|q〉 are isomorphic.
Inductive step (assume claim true for k− 1): if 〈k|p〉 and 〈k|q〉 encode the same
function f : Sk × · × S1 → N ∪ {∞}, consider the function obtained when we
fix ik to a particular value t, i.e., fik=t. Let g and h be the functions encoded
by 〈k|p〉[t].child and 〈k|q〉[t].child, respectively; also, let 〈k|p〉[t].val = α and
〈k|q〉[t].val = β, and observe that the functions α+g and β+hmust coincide with
fik=t. However, because of Corollary 1, we know that both the g and h evaluate
to 0, their minimum possible value, for at least one choice of the arguments
(ik−1, . . . , i1). Thus, the minimum of values α+g and β+h can have are α and β,
respectively; since α+g and β+h are the same function, they must have the same
minimum, hence α = β. This implies that g = h and, by inductive hypothesis,
that 〈k|p〉[t].child and 〈k|q〉[t].child are isomorphic. Since this argument applies
to a generic child t, the two nodes 〈k|p〉 and 〈k|q〉 are then themselves isomorphic,
completing the proof. 2

UnionMin(k : level , (α, p) : edge, (β, q) : edge) : edge

1 if α =∞ then return (β, q);

2 if β =∞ then return (α, p);

3 if k = 0 then return (min(α, β), 0); • the only node at level k = 0 has index 0

4 if UCacheFind(k, p, q, α−β, (γ, u)) then •match (k, p, q, α−β), return (γ, u)

5 return (γ +min(α, β), u);

6 u← NewNode(k); • create new node at level k with edges set to (∞, 0)

7 µ← min(α, β);

8 for ik = 0 to nk − 1 do

9 p′ ← 〈k|p〉.child [ik]; α
′ ← α− µ+ 〈k|p〉.val [ik];

10 q′ ← 〈k|q〉.child [ik]; β
′ ← β − µ+ 〈k|q〉.val [ik];

11 〈k|u〉[ik]← UnionMin(k−1, (α′, p′), (β′, q′)); • continue downstream

12 CheckInUniqueTable(k, u);

13 UCacheInsert(k, p, q, α− β, (0, u)); Value was µ in the published version, not 0.
There is actually no need to store this value in the cache, as it is always 0.

14 return (µ, u);

Fig. 5. The UnionMin algorithm for EV+MDDs.

4 Operations with EV+MDDs

We are now ready to discuss manipulation algorithms for EV+MDDs. We do so
in the context of our state–space and distance generation problem, although, of
course, the UnionMin function we introduce in Figure 5 has general applicability.
The types and variables used in the pseudo–code of Figures 5 and 7 are event
(model event, e), level (EV+MDD level, k), index (node index within a level, p,
q, p′, q′, s, u, f), value (edge value, α, β, α′, β′, µ, γ, φ), local (local state index
ik, jk), and localset (set of local states for one level, L). In addition, we let edge
denote the pair (value, index), i.e., the type of 〈k|p〉[i]; note that only index is
needed to identify a child, since the level itself is known: k−1.

The UnionMin algorithm computes the minimum of two partial functions.
This acts like a dual operator by performing the union on the support sets of
states of the two operands (which must be defined over the same potential state

space Ŝ), and by finding the minimum value for the common elements. The
algorithm starts at the roots of the two operand EV+MDDs, and recursively
descends along matching edges. If at some point one of the edges has value ∞,
the recursion stops and returns the other edge (since ∞ is the neutral value with
respect to the minimum); if the other edge has value ∞ as well, the returned
value is (∞, 0), i.e., no states are added to the union; otherwise, if the other edge
has finite value, we have just found states reachable in one set but not in the
other. If the recursion reaches instead all the way to the terminal node 〈0|0〉, the
returned value is the minimum of the two input values α and β.

If both α and β are finite and p and q are non–terminal, UnionMin “keeps”
the minimum value on the incoming arcs to the operands, µ, and “pushes down”
any residual value α−µ, if µ = β < α, or β−µ, if µ = α < β, on the children of

i3 0 0 0 0 1 1 1 1 2 2 2 2

i2 0 0 1 1 0 0 1 1 0 0 1 1

i1 0 1 0 1 0 1 0 1 0 1 0 1

f 0 ∞ 2 ∞ 2 ∞ ∞ 1 3 ∞ ∞ 2
g 0 2 ∞ ∞ 2 4 ∞ ∞ 1 3 ∞ 3

h 0 2 2 ∞ 2 4 ∞ 1 1 3 ∞ 2

0 1 2

0 2 1 0

0 0

0 2 1

0 0 2

0 2 0

0 1 1

0 2 1 0 0 1

0 2 0 0

f g h=min(f,g)

0 0 0

Fig. 6. An example of the UnionMin operator for EV+MDDs.

p or q, respectively, in its recursive downstream calls. In this case, the returned
edge (µ, u) is such that µ+ f〈k|u〉 = min(α+ f〈k|p〉, β + f〈k|q〉).

An example of the application of the UnionMin algorithm is illustrated in
Figure 6. The potential state space is S3 × S2 × S1 = {0, 1, 2} × {0, 1} × {0, 1}.
The functions encoded by the operands, f and g, are listed in the table to the
left, along with the result function h = min(f, g).

Lemma 2. The call UnionMin(k, (α, p), (β, q)) returns an edge (µ, u) such that
µ = min(α, β) and 〈k|u〉 and its descendants satisfy property 5 of Definition 2,
if 〈k|p〉 and 〈k|q〉 do.

Proof. It is immediate to see that µ = min(α, β). To prove that 〈k|u〉 satisfies
property 5, we use induction: if k = 0, there is nothing to prove, since property
5 applies to non–terminal nodes only. Assume now that the lemma is true for
all calls at level k−1 and consider an arbitrary call UnionMin(k, (α, p), (β, q)),
where the input nodes 〈k|p〉 and 〈k|q〉 satisfy property 5. If α or β is ∞, the
returned node is one of the input nodes, so it satisfies property 5. Otherwise,
since µ = min(α, β), at least one of α−µ and β−µ is 0; say α−µ = 0. The values
labelling the edges of 〈k|u〉 are computed in line 11 of UnionMin. Since 〈k|p〉
satisfies property 5, there exists ik ∈ {0, . . . , nk−1} such that 〈k|p〉.val [ik] =
0. Then, for the corresponding iteration of the for–loop, α′ is 0 and the edge
returned by UnionMin(k−1, (α′, p′), (β′, q′)) is (min(α′, β′), u′) = (0, u′), where
〈k−1|u′〉 satisfies property 5 by induction; thus, 〈k|u〉[ik].val is set to 0. 2

We conclude the discussion of UnionMin by observing that the hash–key for
the entries in our “union/min cache” is formed by the two nodes (passed as level ,
index , index , since the nodes are at the same level) plus the difference α−β of
the values labelling two edges pointing to these nodes. This is better than using
the key (k, p, q, α, β), which would unnecessarily clutter the cache with entries
of the form (k, p, q, α + τ, β + τ, (µ + τ, u)), for all the values of τ arising in a
particular execution.

4.1 State–space and distance generation using EV+MDDs

Our fixed–point algorithm to build and store the distance function δ, and im-
plicitly the state space S, is described by the pseudo–code for BuildDistance,
Saturate, and RecursiveFire, shown in Figure 7. Given a model (Ŝ,Xinit,N) we
follow these steps:

1. Encode Xinit into an initial EV+MDD node 〈K|r〉. This can be done by
building the MDD for Xinit, then setting to 0 all edge values for edges going
to true (called 1 in the MDD terminology of [10]), setting the remaining edge
values to ∞, eliminating the terminal node false, and renaming the terminal
node true as 0 (in EV+MDD terminology). See [10] on how to build an MDD
when Xinit contains a single state. In general, the MDD encoding of Xinit

will be derived from some other symbolic computation, e.g., it will be already
available as the result of a temporal logic query.

2. Call BuildDistance(K , r).

Functions CheckInUniqueTable, LocalsToExplore,UCacheFind , FCacheFind ,
UCacheInsert , FCacheInsert , PickAndRemoveElementFromSet , and CreateNode
have the intuitive semantic associated to their name (see also the comments in
the pseudo–code). Normalize(k, s) puts node 〈k|s〉 in canonical form by comput-
ing µ = min{〈k|s〉[ik].val : ik ∈ Sk} and subtracting µ from each 〈k|s〉[ik].val
(so that at least one of them becomes 0), then returns µ; in particular, if all
edge values in 〈k|s〉 are ∞, it returns ∞ (this is the case in Statement 17 of
RecursiveFire if the while–loop did not manage to fire e from any of the local
states in L).

The hash–key for the firing cache does not use the value α on the incoming
edge, because the node 〈k|s〉 corresponding to the result (γ, s) of RecursiveFire is
independent of this quantity. The edge value returned by RecursiveFire depends
instead of α: it is simply obtained by adding the result of Normalize(k, s) to α.

RecursiveFire may push excess values upwards when normalizing a node
in line 17, that is, residual values are moved in the opposite direction as in
UnionMin. However, the normalization procedure is called only once per node
(when the node has been saturated), therefore excess values are not bounced
back and forth repeatedly along edges.

4.2 Trace generation using EV+MDDs

Once the EV+MDD (ρ, 〈K|r〉) encoding δ and S is built, a shortest–length trace
from any of the states in Xinit to one of the states in a set X (given in input as an
MDD) can be obtained by backtracking. For simplicity, the following algorithm
does not output the identity of the events along the trace, but this option could
be easily added, if desired:

1. Transform the MDD for X into an EV+MDD (ρx, 〈K|x〉) encoding X and δx
using the approach previously described for Xinit, where δx(i) = 0 if i ∈ X

and δx(i) = ∞ if i ∈ Ŝ \ X .

BuildDistance(k : level , p : index)

1 if k > 0 then

2 for ik = 0 to nk − 1 do

3 if 〈k|p〉[ik].val <∞ then BuildDistance(k − 1, 〈k|p〉[ik].child);
4 Saturate(k, p);

Saturate(k : level , p : index)

1 repeat

2 pChanged← false;
3 foreach e ∈ Ek do

4 L ← LocalsToExplore(e, k, p); • {ik : Ne,k(ik) 6=∅ ∧ 〈k|p〉[ik].val 6=∞}
5 while L 6= ∅ do
6 ik ← PickAndRemoveElementFromSet(L);
7 (α, f)← RecursiveFire(e, k−1, 〈k|p〉[ik]);
8 if α 6=∞ then

9 foreach jk ∈ Ne,k(ik) do
10 (β, u)← UnionMin(k−1, (α+ 1, f), 〈k|p〉[jk]);
11 if (β, u) 6=〈k|p〉[jk] then
12 〈k|p〉[jk]←(β, u);
13 pChanged← true;
14 if Ne,k(jk) 6= ∅ then L ← L∪{jk}; • remember to explore jk later

15 until pChanged = false;
16 CheckInUniqueTable(k, p);

RecursiveFire(e : event , k : level , (α, q) : edge) : edge

1 if k < Bot(e) then return (α, q); • level k is not affected by event e

2 if FCacheFind(k, q, e, (γ, s)) then •match (k, q, e), return (γ, s)
3 return (γ + α, s);
4 s← NewNode(k); • create new node at level k with edges set to (∞, 0)
5 sChanged ← false;
6 L ← LocalsToExplore(e, k, q); • {ik : Ne,k(ik) 6=∅ ∧ 〈k|q〉[ik].val 6=∞}
7 while L 6= ∅ do
8 ik ← PickAndRemoveElementFromSet(L);
9 (φ, f)← RecursiveFire(e, k−1, 〈k|q〉[ik]);

10 if φ 6=∞ then

11 foreach jk ∈ Ne,k(ik) do
12 (β, u)← UnionMin(k−1, (φ, f), 〈k|s〉[jk]);
13 if (β, u) 6=〈k|s〉[jk] then
14 〈k|s〉[jk]← (β, u);
15 sChanged ← true;
16 if sChanged then Saturate(k, s);
17 γ ← Normalize(k, s);
18 s← CheckInUniqueTable(k, s);
19 FCacheInsert(k, q, e, (γ, s));
20 return (γ + α, s);

Fig. 7. BuildDistance, our saturation–based algorithm using EV+MDDs.

2. Compute IntersectionMax (K, (ρ, r), (ρx, x)), which is the dual of UnionMin,
and whose pseudo–code is exactly analogous; let (µ, 〈K|m〉) be the resulting
EV+MDD, which encodes X ∩S and the restriction of δ to this set (µ is then
the length of one of the shortest–paths we are seeking).

3. Extract from (µ, 〈K|m〉) a state j[µ] = (j
[µ]
K , . . . , j

[µ]
1) encoded by a path from

〈K|m〉 to 〈0|0〉 labelled with 0 values (j[µ] is a state in X at the desired min-
imum distance µ from Xinit). The algorithm proceeds now with an explicit
flavor.

4. Initialize ν to µ and iterate:
(a) Find all states i ∈ Ŝ such that j[ν] ∈ N (i). With our boolean Kronecker

encoding of N , this “one step backward” is easily performed: we simply
have to use the transpose of the matrices Ne,k.

(b) For each such state i, compute δ(i) using (ρ, 〈K|r〉) and stop on the first
i such that δ(i) = ν − 1 (there exists at least one such state i∗).

(c) Decrement ν.
(d) Let j[ν] be i∗.

5. Output j[0], . . . , j[µ].

The cost of obtaining j[µ] as the result of the IntersectionMax operation is
O(#〈K|r〉 · #〈K|x〉), where # indicates the number of EV+MDD nodes. The
complexity of the rest of the algorithm is then simply O(µ ·M ·K), where M is
the maximum number of incoming arcs to any state in the reachability graph of
the model, i.e., M = max{|N−1(j)| : j ∈ S}, and K comes from traversing one
path in the EV+MDD. In practice M is small but, if this were not the case, the
set N−1(j[ν]) could be computed symbolically at each iteration instead.

Generating the same trace using traditional symbolic approaches could follow
a similar idea. If we used ADDs, we would start with an ADD encoding the same
information as the EV+MDD (ρx, 〈K|x〉), compute the ADD equivalent to the
EV+MDD (µ, 〈K|m〉) using a breadth–first approach, and pick as j[µ] any state
leading to a terminal with minimal value µ. If we used a forest of MDDs, we
would compute µ = min{d : N d(Xinit) ∩ X 6= ∅}, and pick as j[µ] any state in
N µ ∩ X . Then, the backtracking would proceed in exactly the same way.

In either case, however, we are discovering states symbolically in breadth–
first order, thus we could choose to perform an intersection with X after finding
each additional set of states N d, and stop as soon as N d(Xinit)∩X 6= ∅. Overall,
we would then have explored only {i : δ(i) ≤ µ}, which might be a strict subset
of the entire state space S. However, two observations are in order. First, while
this “optimization” manages fewer states, it may well require many more nodes
in the symbolic representation: decision diagrams are quite counter–intuitive in
this respect. Second, in many verification applications, the states in X satisfy
some property, e.g., “being a deadlock”, and they can only be reached in some
obscure and tortuous way, so that the minimum distance µ to any state in X is
in practice close, if not equal, to the maximum distance ρ to any of the states
in S.

The advantage of our approach is that, while it must explore the entire S, it
can do so using the idea of saturation, thus the resulting decision diagrams are

Table 1. Comparison of the five approaches (“—” means “out of memory”).

Time Number of nodes
N |S| (in seconds) final peak

Es Eb Mb As Ab EsEb Mb AsAb Es Eb Mb As Ab

Dining philosophers: D=2N , K=⌈N/2⌉, |Sk|=34 for all k except |S1|=8 when N is odd

5 1.3·103 0.00 0.01 0.01 0.01 0.03 11 83 38 11 155 172 48 434

10 1.9·106 0.01 0.06 0.05 0.12 0.46 21 255 170 21 605 644 238 4022

20 3.5·1012 0.01 0.34 0.28 1.64 9.00 46 1100 740 46 2990 3079 1163 38942

25 4.7·1015 0.01 0.59 0.47 4.09 26.08 61 1893 1178 61 5215 5334 1958 79674

30 6.4·1018 0.02 0.86 0.70 7.39 56.80 71 2545 1710 71 7225 7364 2788 140262

1000 9.2·10626 0.48 — — — — 2496 — — 2496 — — — —

Kanban system: D=14N , K=4, |Sk|=(N+3)(N+2)(N+1)/6 for all k

3 5.8·104 0.01 0.02 0.02 0.04 0.17 7 180 68 29 454 464 284 3133

5 2.5·106 0.02 0.14 0.12 0.24 1.55 9 444 133 57 1132 1156 776 13241

7 4.2·107 0.04 0.51 0.42 0.94 7.79 11 848 218 93 2112 2166 1600 35741

10 1.0·109 0.16 2.10 1.68 4.68 48.86 14 1673 383 162 4041 4160 3616 98843

12 5.5·109 0.34 4.34 3.45 11.08 129.46 16 2368 518 218 5633 5805 5585 165938

50 1.0·1016 179.48 — — — — 58 — — 2802 — — — —

Flex. manuf. syst.: D=14N , K=19, |Sk|=N+1 for all k except |S17|=4, |S12|=3, |S2|=2

3 4.9·104 0.00 0.12 0.09 0.26 1.58 88 1925 1191 116 5002 5187 2075 37657

5 2.9·106 0.01 0.42 0.34 0.88 11.78 149 5640 2989 211 15205 15693 4903 179577

7 6.6·107 0.02 1.05 0.85 2.08 65.32 222 12070 5739 326 32805 33761 9027 523223

10 2.5·109 0.04 2.96 2.40 5.79 608.92 354 28225 11894 536 76676 78649 17885 1681625

140 2.0·1023 20.03 — — — — 32012 — — 52864 — — — —

Round–robin mutex protocol: D=8N−6, K=N+1, |Sk|=10 for all k except |S1|=N+1

10 2.3·104 0.01 0.06 0.05 0.22 0.50 92 1038 1123 107 1898 1948 1210 9245

15 1.1·106 0.01 0.15 0.14 1.00 2.93 177 2578 3136 212 4774 4885 3308 34897

20 4.7·107 0.02 0.32 0.31 3.10 12.62 287 4968 6619 322 9270 9467 6901 92140

25 1.8·109 0.03 0.59 0.54 7.89 52.29 422 8333 11947 477 15636 15944 12364 198839

30 7.2·1010 0.05 0.95 0.89 16.04 224.83 582 12798 19495 637 24122 24566 20072 376609

200 7.2·1062 1.63 — — — — 20897 — — 21292 — — — —

built much more efficiently and require much less memory than with breadth–
first approaches. The following section confirms this, focusing on the first and
expensive phase of trace generation, the computation of the distance information,
since the backtracking phase has negligible cost in comparison and is in any case
essentially required by any approach.

5 Results

To stress the importance of using a saturation–based approach, we compare the
three types of encodings for the distance function we have discussed, EV+MDDs,
forests of MDDs, and ADDs, in conjunction with two iteration strategies, based
on breadth–first and saturation, respectively (see Table 1). Since only breadth–
first is applicable in the case of forests of MDDs, this leads to five cases: EV+MDD
with saturation (Es), EV

+MDD with breadth–first (Eb), forest of MDDs with
breadth–first (Mb), ADD with saturation (As), and ADD with breadth–first
(Ab). Note that only Mb and Ab have been used in the literature before, while

Es and Eb use our new data structure and As (which we cannot discuss in detail
for lack of space) applies the idea of saturation to ADDs, thus it is also a new
approach.

We implemented the five algorithms (their MDD, not BDD, version) in our
tool SMART [8] and used them to generate the distance function for the entire
state space. The suite of examples is chosen from the same benchmark we used in
[10]; each model is scalable by a parameter N . All experiments were ran on a 800
MHz Pentium III workstation with 1GB of memory. For each model, we list the
maximum distance D, the number K of levels in the decision diagram, and the
sizes of the local state spaces. For each experiment we list the maximum distance
to a reachable state, which is also the number of iterations in the breadth–first
approaches, the runtime, and the number of nodes (both final and peak).

In terms of runtime, there is a clear order: Es < Eb < Mb < As < Ab, with
Es easily managing much larger systems; Es, Eb < Mb < As, Ab clearly attests
to the effectiveness of the data structures, while Es < Eb and As < Ab attest to
the improvements obtainable with saturation–based approaches.

With EV+MDDs, in particular with Es, we can scale up the models to huge
parameters. The other two data structures do not scale up nearly as well and run
out of memory. In terms of memory consumption: Es < As < Eb ≈ Mb < Ab

for the peak number of nodes, while Es = Eb < As = Ab ≈ Mb for the final
number of nodes. The key observation is that Es substantially outperforms all
other methods. Compared to Ab, it is over 1,000 times faster and uses fewer peak
nodes, also by a factor of 1,000.

6 Conclusion

We introduced EV+MDDs, a new canonical variation of EVBBDs, which can be
used to store the state space of a model and the distance of every state form
the initial set of states within a single decision diagram. A key contribution is
that we extend the saturation approach we previously introduced for state–space
generation alone, and apply it to this data–structure, resulting in a very fast and
memory–efficient algorithm for joint state–space and distance generation.

One conclusion of our research is a clear confirmation of the effectiveness of
saturation as opposed to a traditional breadth–first iteration, not just when used
in conjunction with our EV+MDDs, but even with ADDs. A second orthogonal
conclusion is that edge–valued decision diagrams in general are much more suited
than ADDs to the task at hand, because they implicitly encode the possible
distance values, while ADDs have an explicit terminal node for each possible
value, greatly reducing the degree of node merging in the diagram.

Future work along these research lines includes exploring smarter cache man-
agement policies that exploit properties of the involved operators (e.g., additiv-
ity), extending the idea to EU and EG operators (probably a major challenge),
comparing the performance of our method with that of non BDD–based tech-
niques (such as using SAT solvers [4]), and investigate other fields of application
for EV+MDDs.

References

1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on
SAT-solvers. In S. Graf and M. Schwartzbach, editors, Proc. Tools and Algorithms
for the Construction and Analysis of Systems TACAS, Berlin, Germany, volume
1785 of LNCS, pages 411–425. Springer-Verlag, 2000.

2. V. Amoia, G. De Micheli, and M. Santomauro. Computer-oriented formulation
of transition-rate matrices via Kronecker algebra. IEEE Trans. Rel., 30:123–132,
June 1981.

3. R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Maciii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. Formal Methods
in System Design, 10(2/3):171–206, Apr. 1997.

4. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. LNCS, 1579:193–207, 1999.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comp., 35(8):677–691, Aug. 1986.

6. R. E. Bryant and Y.-A. Chen. Verification of arithmetic circuits with binary
moment diagrams. In Proc. of Design Automation Conf. (DAC), pages 535–541,
1995.

7. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proc. 5th Annual IEEE Symp. on
Logic in Computer Science, pages 428–439, Philadelphia, PA, 4–7 June 1990. IEEE
Comp. Soc. Press.

8. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. SMART: Stochas-
tic Model Analyzer for Reliability and Timing. In P. Kemper, editor, Tools of
Aachen 2001 Int. Multiconference on Measurement, Modelling and Evaluation of
Computer-Communication Systems, pages 29–34, Aachen, Germany, Sept. 2001.

9. G. Ciardo, G. Luettgen, and R. Siminiceanu. Efficient symbolic state-space con-
struction for asynchronous systems. In M. Nielsen and D. Simpson, editors, Appli-
cation and Theory of Petri Nets 2000 (Proc. 21th Int. Conf. on Applications and
Theory of Petri Nets, Aarhus, Denmark), LNCS 1825, pages 103–122. Springer-
Verlag, June 2000.

10. G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In T. Margaria and W. Yi, edi-
tors, Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 2031, pages 328–342, Genova, Italy, Apr. 2001. Springer-Verlag.

11. E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Progr. Lang. and
Syst., 8(2):244–263, Apr. 1986.

12. E. Clarke and X. Zhao. Word level symbolic model checking: A new approach
for verifying arithmetic circuits. Technical Report CS-95-161, Carnegie Mellon
University, School of Computer Science, May 1995.

13. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
14. R. Drechsler and B. Becker. Overview of decision diagrams. IEE Proc.-Comput.

Digit. Tech., 144(3):187–193, May 1997.
15. E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient generation

of counterexamples and witnesses in symbolic model checking. In 32nd Design
Automation Conference (DAC 95), pages 427–432, San Francisco, CA, USA, 1995.

16. A. Geser, J. Knoop, G. Lüttgen, B. Steffen, and O. Rüthing. Chaotic fixed point
iterations. Technical Report MIP-9403, Univ. of Passau, 1994.

17. R. Hojati, R. K. Brayton, and R. P. Kurshan. BDD-based debugging of designs
using language containment and fair CTL. In C. Courcoubetis, editor, Computer
Aided Verification (CAV’93), volume 697 of LNCS, pages 41–58, Elounda, Greece,
June/July 1993. Springer-Verlag.

18. J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitioned
transition relations. In A. Halaas and P.B. Denyer, editors, Int. Conference on
Very Large Scale Integration, pages 49–58, Edinburgh, Scotland, Aug. 1991. IFIP
Transactions, North-Holland.

19. T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued deci-
sion diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

20. Y.-T. Lai, M. Pedram, and B. K. Vrudhula. Formal verification using edge-valued
binary decision diagrams. IEEE Trans. Comp., 45:247–255, 1996.

21. Y.-T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level hier-
archical verification. In Proceedings of the 29th Conference on Design Automation,
pages 608–613, Los Alamitos, CA, USA, June 1992. IEEE Computer Society Press.

22. A. S. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In H. Kleijn and S. Donatelli, editors, Application and Theory of
Petri Nets 1999 (Proc. 20th Int. Conf. on Applications and Theory of Petri Nets,
Williamsburg, VA, USA), LNCS 1639, pages 6–25. Springer-Verlag, June 1999.

23. T. Murata. Petri Nets: properties, analysis and applications. Proc. of the IEEE,
77(4):541–579, Apr. 1989.

24. P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining Decision Dia-
grams and SAT Procedures for Efficient Symbolic Model Checking. In Proceedings
of CAV’00, pages 124–138, 2000.

