1 Consensus Reduction

Proposition 1 \(\forall n, \) Consensus is unsolvable for \(n \) processors given Byzantine failures \(f \) if \(n \leq 3f \).

Proposition 2 Consensus is unsolvable given a system of 3 processors with one Byzantine fault.

We want to perform a reduction from proposition 2 to proposition 1. Remember from complexity, for a reduction of an algorithm \(B \) to \(A \), \(B \leq_c A \), if there’s an algorithm for \(A \) then there’s an algorithm for \(B \). Then there’s the contrapositive: if there isn’t an algorithm for \(B \) then there isn’t an algorithm for \(A \).

Lemma 1 If proposition 2 holds, then proposition 1 holds.

Proof: For contradiction, assume \(\forall n, \) if for \(n \leq 3f \) consensus is solvable for \(n \) processors given a number of Byzantine failures \(f \) then Consensus is solvable given a system of 3 processors with one Byzantine fault. Assume proposition 2 holds. For contradiction, assume that proposition 1 does not hold such that there is an algorithm \(A \) that solves consensus in a system with \(3f \) processors and up to \(f \) Byzantine failures. (Since we know there’s not an algorithm for \(B \). The reduction will show there’s not an algorithm for \(A \).)

Let three processors \(P_1, P_2 \) and \(P_3 \) be processors. Copy \(P_1 \)'s output to virtual processors \(0 \ldots f - 1 \), \(P_2 \)'s output to virtual processors \(f \ldots 2f - 1 \) and \(P_3 \)'s output to virtual processors \(2f \ldots 3f - 1 \). One of the processors \(P_1, P_2 \) or \(P_3 \) will experience a Byzantine failure; therefore, \(f \) virtual processors will also have a Byzantine fault. Since we assumed proposition 1 does not hold, algorithm \(A \) solves consensus, and its output can be fed back to processors \(P_1, P_2 \) and \(P_3 \). Thus there exists an algorithm solving consensus for 3 processors with one Byzantine fault. We have a contradiction since we assumed that 2 holds. Thus Lemma 1 holds.
2 Atomic Snapshot Objects

Atomic Snapshot Objects have two operations:

- \(\text{scan}_i \): where the response is \(\text{return}_i(v) \) where \(v \) is an \(n \)-element vector.
- \(\text{update}_i(d) \): where \(d \) is the data written to \(p_i \)'s segment, whose response is \(\text{ack}_i \).

We will be using atomic snapshot objects for our Borowsky Gafni simulation. It is important to note, that atomic snapshot objects are no more powerful than single-writer, multi-reader, atomic registers.

2.1 BG (Borowsky Gafni) Simulation

The Borowsky Gafni Simulation is a shared memory algorithm that allows a set of \(f + 1 \) processors to wait-free simulate a larger system of \(n \) processors of which at most \(f \) may crash.

The simulation uses a \textit{safe agreement module} that runs on the atomic snapshot model. Lines 2-7 are wait-free, while lines 8-10 are non-blocking, but require busy-waiting. If any processor fails in lines 2-7, it is possible that \(\text{level}_i = 1 \). Then for all other processors, line 8 will result in an infinite loop once it reaches \(\text{level}_i \). For any thread where a failure occurs, all other processors will also not reach agreement. There are \(f + 1 \) such threads, \(f \) of which can contain a failure. There exists at least one thread on which all \(n \) processors will successfully execute the safe agreement module since at most \(f \) processors will fail. Thus our safe agreement module lets us simulate a system of \(n \) processors with at most \(f \) failures using a shared memory algorithm for \(f + 1 \) processors with \(f \) failures.
Algorithm 1 Protocol for P_i

1: procedure $\text{propose}(v)_i$
2: \hspace{1em} $\text{val}_i := \text{value}$ \hspace{2em} \triangleright Initially $\text{level}_i = 0, \text{val}_i = 1$
3: \hspace{1em} $\text{level}_i := 1$
4: \hspace{1em} $\text{scan}([\text{val}_j, \text{level}_j])_j$
5: \hspace{1em} if $\exists j, \text{level}_j = 2$
6: \hspace{2.1em} then $\text{level}_i := 0$
7: \hspace{2.1em} else $\text{level}_i := 2$
8: \hspace{1em} repeat $\text{scan}(\text{val}_i, \text{level}_i)$ of all P_j
9: \hspace{2.1em} until $\forall j, \text{level}_j \neq 1$
10: \hspace{1em} return val_i
11: end procedure