1 Introduction

In this lecture the concept of \textit{valence} is introduced. We then build upon the notion of valence and examine how to prove that objects are on a specific level of the consensus hierarchy. Finally, we use this process to show that read/write objects are on level 1 of the consensus hierarchy, while additionally proving 3 important supporting Lemmas.

2 Read/write objects in the Consensus Hierarchy

2.1 Definitions

Definition 1 The \textit{valence} of a configuration C is the set of all values that are decided upon by some processor in some configuration reachable from C.

Definition 2 A configuration C is \underline{0-valent} if its valence is $\{0\}$.

Definition 3 A configuration C is \underline{1-valent} if its valence is $\{1\}$.

Definition 4 A configuration C is \underline{univalent} if it is either 0-valent or 1-valent.

Definition 5 A configuration C is \underline{bivalent} if some reachable configurations are 0-valent and some are 1-valent.

Definition 6 If C is a bivalent configuration but the configuration resulting from some processor p_i taking a step from C is univalent, then p_i is \underline{critical} in C.

2.2 Placing Objects in the Consensus Hierarchy

In order to show some object X is at level k of the consensus hierarchy, we need to show two properties:

1. A k-processor wait-free consensus algorithm can be implemented using objects of type X.
2. No $k+1$-processor wait-free consensus algorithm using objects of type X exists.
2.3 Placing Read/write objects in the Consensus Hierarchy

Theorem 1 Read/write objects are at level 1 of the consensus hierarchy.

Showing Property 1 is trivial for Theorem 1, but to show property 2 we need a few Lemmas.

Lemma 2 Let C_1 and C_2 be univalent configurations. If $C_1 \triangleright C_2$, then C_1 is v-valent if and only if C_2 is v-valent for $v = 0, 1$.

Proof: Suppose C_1 is v-valent for some $v \in \{0, 1\}$. Now consider an infinite p_1-only execution σ from C_1. Since the algorithm is wait-free, p_i will eventually decide on a value. Since C_1 is v-valent, p_i decides on value v. However, since $C_1 \triangleright C_2$, p_i can take the same infinite execution σ from C_2, so p_i will decide v here as well. Therefore C_2 is also v-valent.

Lemma 3 There exists an initial bivalent configuration.

Proof: Let C_0 be the configuration $<0,0>$, C_1 be the configuration $<1,1>$, and C_{01} be the configuration $<0,1>$. Because of the validity property, C_0 is 0-valent while C_1 is 1-valent. We prove C_{01} is bivalent.

Suppose for contradiction that C_{01} is univalent, and without loss of generality assume it is 0-valent. Clearly, $C_{01} \triangleright C_1$ since p_2 has the same initial value in both C_{01} and C_1. Thus, by Lemma 1, C_{01} and C_1 have the same valency. Since C_1 is 1-valent, then C_{01} must also be 1-valent, a contradiction.

XXX add diagram here

Lemma 4 If C is a bivalent configuration, then at least 1 processor is not critical in C.

Proof: Suppose for contradiction that we have two processors, p_1 and p_2, that are both critical in a bivalent configuration C. Then both $p_1(C)$ and $p_2(C)$ are univalent. $p_1(C)$ and $p_2(C)$ must have different valencies since C is bivalent, so assume without loss of generality that $p_1(C)$ is 0-valent and $p_2(C)$ is 1-valent. We also assume without loss of generality that the registers are single writer (since we can construct multi writers from single writers). We must now examine two cases:

Case 1: Both processors either access different registers or read from the same register.

The key in case 1 is that $p_1(C)$ and $p_2(C)$ have no interaction, so $p_1(C) \triangleright p_1(p_2(C))$ and $p_2(C) \triangleright p_2(p_1(C))$. Thus $p_1(p_2(C)) = p_2(p_1(C))$ and no matter the order in which processors take steps, we arrive at the same configuration C'. Since $p_1(C)$ is 0-valent and $p_2(C)$ is 1-valent and since p_1 and p_2 are both critical in C, this is a contradiction by Lemma 2.

XXX add diagram here

Case 2: One processor reads and one processor writes, both to the same register.

In this case, assume without loss of generality that p_1 writes and p_2 reads. Since p_2 does not modify any values, $C \triangleright p_2(C)$, and thus $p_1(C) \triangleright p_1(p_2(C))$. Since $p_1(C)$ is 0-valent and $p_2(C)$ is 1-valent, and since p_1 and p_2 are both critical in C, this is a contradiction by Lemma 2.

XXX add diagram here
2.3.1 Proof of Theorem 1

Using the preceding Lemmas we can now prove Theorem 1.

Proof: Showing Property 1 is trivial: since there is exactly one processor \(p \), \(p \) simply decides what its input is.

To show Property 2 we construct an infinite bivalent execution. Let \(C_0 \) be the initial bivalent configuration, proven to exist by Lemma 3. We inductively define the sequence \(C_0, i_0, C_1, i_1, C_2, i_2, \ldots \)

Suppose we have constructed an execution up to \(C_k \). By Lemma 4, either \(p_1 \) or \(p_2 \) is not critical in \(C_k \). Let \(i_k \) be the non-critical processor, and it is this processor we allow to take a step. Thus \(C_{k+1} \) is bivalent.

By continually allowing the non-critical processor to take a step, the execution remains bivalent and thus no consensus is achieved. \(\Box \)