1 Legality of sequential schedule constructed for local read algorithm

We have proved in the previous lecture that there exists a \(\Pi \) for any execution for the local read algorithm such that the ordering of events is preserved (Theorem 2). Now, we shall prove that legality also holds in such a \(\Pi \). As we shall be referring to Lemma 1 and Lemma 2 in the following proof, it is convenient to have them here.

Lemma 1: For every \(P_i \):
1. \(P_i \)'s local copies take on all values of the writes.
2. All updates occur in the same order in all processors.
3. This order preserves the order of writes by individual processors.

Lemma 2: For all \(P_i \) if \(op_1 \) precedes \(op_2 \) in \(\sigma | i \), where \(\sigma \) is the sequence of invocations and responses in an execution \(\alpha \), then the local read/write for \(op_1 \) at \(P_i \)'s copy precedes the local read/write for \(op_2 \) at \(P_i \)'s copy.

Theorem 3 The \(\Pi \) constructed from \(\sigma \) produced by the local read algorithm satisfies legality.

Proof: Consider read \(r_i \) by \(P_i \) that reads \(v \) from \(X \). Let \(w_j \) be the write that caused the latest update to \(P_i \)'s copy of \(X \) and comes before \(r_i \). This write \(w_j \) can belong to any processor \(P_j \). Legality of \(\Pi \) requires that \(w_j < r_i \) in \(\Pi \) and there does not exist a \(w' \) such that it writes to \(X \) and \(w_j < w' < r_i \) in \(\Pi \).

Suppose for contradiction there exists such \(w' \) by \(P_k \). By definition of \(\Pi \), \(r_i \) should be placed immediately after: \(w_j \) (by condition 2 of \(\Pi \) construction) or the latest operation by \(P_i \) that comes before \(r_i \). Since \(w_j < w' < r_i \) in \(\Pi \), by condition 1 of \(\Pi \) construction, there can be one or more than one operations by \(P_i \) that are eligible to be placed between \(w' \) and \(r_i \) in \(\Pi \). Let \(op_i \) be the earliest of such operations. So, we have \(w_j < w' \leq op_i < r_i \).

Case 1: \(op_i \) is a write.

By Lemma 1, since \(w_j < w' \) in \(\Pi \), update for \(w_j \) precedes update for \(w' \). By Lemma 2, since \(op_i \) precedes \(r_i \) in \(\sigma | i \), the update for \(op_i \) precedes the local read for \(r_i \). Since \(w' \leq op_i \) in \(\Pi \), by lemma 1, update for \(w' \) precedes or equals the update for \(op_i \). In either case, update for \(w_j \) precedes update for \(w' \) which in turn precedes the local read for \(r_i \). This contradicts the
assumption that w_j is the latest update of X preceding local read for r_i.

Case 2: op_i is a read of some object Y.

As per definition of Π, op_i should be placed in Π immediately after: the previous operation by P_i or the latest write w'' of Y, whose update precedes the local read for op_i. Since op_i is the first operation to occur in P_i after w', there is no "previous" operation by P_i that comes between w' and op_i. So, the placement of op_i in Π has to be done according to the second condition of Π construction. That is, there must exist a write w'' on Y whose update precedes local read for op_i and so: $w_j < w' \leq w'' < op_i < r_i$ in Π.

By Lemma 1, update for w_j precedes update for w', which precedes (or equals) update for w''. By our assumption, update for w'' precedes update for op_i. Since $op_i < r_i$ in $\sigma \mid i$, by Lemma 2, local read of op_i precedes local read of r_i. So, update for w' precedes local read for r_i. Finally we have update for w_j preceding update for w' which in turn precedes local read for r_i. This contradicts the fact that w_j is the latest update of X preceding local read for r_i. So, legality is satisfied by Π.

Theorem 4 The local read algorithm preserves sequential consistency

Proof: From Theorem 2 (of lecture 17) and Theorem 3 we can conclude that Π maintains ordering of events and satisfies legality. So, the local read algorithm preserves sequential consistency.

2 Local write algorithm

Initially, we proposed a local read algorithm that satisfies sequential consistency. The following algorithm which makes local writes instead of local reads can also satisfy sequential consistency.

Pseudocode for processor P_i:

1. When $read_i(X)$ occurs
 if num = 0 then
 $return_i(X, copy[X])$
 2. when $write_i(X, v)$ occurs
 $num = num + 1$
 $tbc - send_i(X, v)$
 $ack_i(X)$
 3. when $tbc - recv_i(X, v)$ occurs from P_j
 $copy[X] := v$
 if $j = i$ then
 $num = num - 1$
 if $num = 0$ and read on X is pending then
 $return_i(X, copy[X])$
In the above algorithm, writes return instantly and reads involve message passing. When a read occurs, it return only after there are no pending writes by processor \(P_i \). In this case also the order of writes is same across all processors as the actual write is triggered by a \(tbc - recv \).

To construct \(\Pi \) for an execution resulting from the above algorithm: we can order all writes in the order of actual updates as decided by ordering of totally ordered broadcast. In a given \(\sigma \) the reads can have two kinds of relationships with the writes: The read completed prior to the write, the read overlaps the write (this happens when the read is waiting from num to be 0 but another write has arrived and finished). In the first case, we can obviously place it before the write as the write has no affect on it. In the second case, the read has to be placed in \(\Pi \) after all the overlapping writes because it returns the value of the latest overlapping write. So, the following conditions can be used to place reads in \(\Pi \). \(read_i(X) \) has to be placed immediately after which ever is the latest in \(\sigma \):

1. The latest operation by \(P_i \) preceding the \(read_i(X) \)
2. The write that caused the latest update of \(P_i \)'s copy of \(X \) preceding \(ack_i \) associated with the \(read_i(X) \).

3 Lower Bounds on Time Complexity

To discuss about time complexity we need to first decide on the model in which the algorithm is running. Based on relative synchronization between the clocks and magnitude of message delay, there are 4 models:

Model 1: Perfect Clocks (every processor has same clock value and same speed) and message delay is exactly \(d \).

Model 2: Perfect Clocks and message delay \(\in [d - u, d] \).

Model 3: Message delay is \(d \) and no perfect clocks.

Model 4: No perfect clocks and message delay \(\in [d - u, d] \).

Model 2 is as strong as Model 1. That is, if an algorithm can work in Model 1, it can be made to work in Model 2 also. The only difference between Model 1 and Model 2 is that the messages can reach in less than \(d \) time but never more then \(d \) time. So, the algorithm can postpone processing of the message for \((d - t) \) time if the message reaches in \(t \) time. Since there are perfect clocks, the algorithm can easily calculate how much time the message spent in transit.

Model 1 is also as strong as Model 2. If an algorithm can work in Model 2, it can work in Model 1 also. Any algorithm that can work with perfect clocks and message delay \([d - u, d] \) can work in the environment of perfect clocks and message delay \(d \) because the latter environment is like a sub-case of the former environment (because \(d \subset [d - u, d] \)).

Model 3 is as strong as Model 1. If an algorithm can work in Model 1 then it can be made to work in Model 3. The essential difference between Model 1 and Model 3 is every clock on
model 1 knows about the time of every other clock. To do this in Model 3, when a processor receives a message, it can look at the time stamp and know how much ahead or behind the sender clock is as compared to its own clock. It can do this because it knows that message delay is exactly d. Suppose there are two processors P_1 and P_2 and P_1 sends a message to P_2. Let the time in P_1 when the message is sent be t_1 and let the time in P_2 at that instant be t_2.

The message reaches P_2 at $t_2 + d$ (P_2 time) and $t_1 + d$ (P_1 time). The offset from P_1 to P_2 is simply $t_1 - t_2$. But P_2 does not know t_2. It knows that the time at which the message arrives which is $t_2 + d$. It also knows t_1 from time stamp of message and d is a system property. So, to obtain $t_1 - t_2$, it calculates $(t_1 + d) - (t_2 + d) = t_1 - t_2$.

P_1 gets the reply from P_2 at $t_1 + 2d$ (P_1 time). But the reply is time stamped with the time at which P_2 received the initial message which is $t_2 + d$ (P_2 time). P_1 can also follow the above procedure to calculate offset: add d to the message time stamp and subtract from it the time at which the message is received. $(t_2 + d) + d - (t_1 + 2d) = t_2 - t_1$.

This kind of awareness enables the processors to perform any time critical operations concerning the sending and receiver as required by the algorithm. Model 1 environment is again a sub-case of Model 3 environment. So, Model 1 is as strong as Model 3.

Model 4 is strictly weaker than all of the other models.